Tobacco use remains a global health problem. It is the leading cause of preventable death. It causes and/or exacerbates many diseases, including cancer, COPD, cardiovascular disease, HIV infection and tuberculosis. All of these diseases are major public health challenges for the 21st century and require tobacco control efforts. Smoking cessation is an essential component in the treatment of smoking-related diseases. It improves patients’ quality of life and life expectancy, reduces respiratory decline, the risk of cardiovascular disease and HIV mortality, and contributes to the cure of tuberculosis. Healthcare professionals need to be involved in tobacco control and effective, evidence-based smoking cessation strategies.
Keywords
Smoking, Cancer, Cardiovascular, HIV infection, COPD, Tuberculosis
Introduction
In 2022, over 20% of the global population smoked. Despite a decline in smoking prevalence, it remains a major global health issue, responsible for over 8 million deaths including 1.3 million non-smokers, a year [1]. There is a clear link between tobacco use and a range of health problems, including cancer, COPD, maladies cardiovasculaires, HIV infection, tuberculosis (TB). Tobacco control is essential to address these issues.
Cancer, COPD, HIV Infection, Cardiovascular Disease, TB and Smoking
Cancer
The International Agency for Research on Cancer (IARC) [2] has recorded 20 million new cancer cases and 9.7 million cancer deaths in 2023. Smoking is a major risk factor for cancer, especially lung cancer (12.4% of all new cancer cases and 18.7% of all cancer deaths). The incidence of lung cancer is increasing worldwide and may increase by 47% between 2020 and 2040 [3].
Chronic Obstructive Pulmonary Disease (COPD)
It affects 10.3% of the global population, accounts for 4.7% of annual global mortality and has a significant economic burden. COPD is characterized by progressive, partially reversible airflow limitation caused by chronic inflammation of the airways. Smoking is the major risk factor for COPD [4].
Cardiovascular Disease
It is a leading cause of death, with nearly two million deaths annually attributed to smoking-related heart disease, including myocardial infarction, stroke, abdominal aortic aneurysm, and peripheral arterial disease. Smoking is a major risk factor for acute cardiovascular events, with smokers more at a younger age [5].
HIV Infection
39.9 million people worldwide are living with HIV; 630,000 die each year and 1.3 million are newly infected. The advent of antiretroviral therapy has reduced AIDS-related mortality, but the proportion of deaths from non-AIDS diseases has increased. Smoking is prevalent in this population; it causes cardiovascular and pulmonary (e.g. COPD, lung cancer) diseases and reduces life expectancy of life in patients [6-8].
Tuberculosis
In 2023, 7.5 million new cases of tuberculosis (TB) were diagnosed. TB was responsible for 1.3 million deaths, and 410,000 people developed multidrug-resistant or rifampin-resistant tuberculosis. Over 80% of TB cases and more than 90% of deaths occur in low- and middle-income countries. The main drivers of the TB epidemic remain the spread of HIV and the emergence of drug-resistant TB; however, tobacco use is estimated to account for 17.6% of TB cases and 15.2% of TB-related deaths in high-incidence countries [9,10]. Smoking (active or passive) increases the risk of tuberculosis infection, progression to TB disease, mortality and recurrence [11].
Stopping Smoking and Tobacco Control
Stopping Smoking: Component of Treatment for Smoking- related Diseases
Smoking is the leading cause of cancer, particularly lung cancer, but quitting improves the quality of life and life expectancy of cancer patients. It reduces the decline in lung function, the frequency of COPD exacerbations, the risk of death in patients with cardiovascular disease or HIV infection, but improves the prognosis of tuberculosis and adherence to anti-tuberculosis treatment [12]. Therefore, health professionals need to help smokers quit with evidence-based smoking cessation interventions [13,14].
Tobacco Control: Public Health Priority
The WHO Framework Convention on Tobacco Control (FCTC) [15], adopted by over 190 countries, aims to protect present and future generations from the health, social, environmental and economic consequences of tobacco consumption and exposure to tobacco smoke. It provides a framework for a global tobacco control strategy to reduce smoking prevalence and exposure to tobacco smoke.
Conclusion
Tobacco use is a major cause of many diseases with a significant impact on public health. Tobacco control has become a major public health issue that must mobilise governments and all healthcare providers.
Conflict of Interest
The authors have no conflict of interest to declare
References
WHO global report on trends in prevalence of tobacco use 2000–2030. Geneva: World Health Organization; 2024
Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2024) et.al. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 [crossref]
Global strategy for prevention, diagnosis and management of COPD (GOLD Report, 2024 update).
Benowitz NL, Liakoni E. Tobacco use disorder and cardiovascular health. Addiction. 2022 [crossref]
The path that ends AIDS: UNAIDS Global AIDS Update 2023. Geneva: Joint United Nations Programme on HIV/AIDS; 2023.
Vidrine DJ. Cigarette smoking and HIV/AIDS: health implications, smoker characteristics and cessation strategies. AIDS Educ Prev. 2009 [crossref]
Konstantinidis I, Crothers K, Kunisaki KM, Drummond MB, Benfield T, Zar HJ, Huang L, Morris A. HIV-associated lung disease. Nat Rev Dis Primers. 2023 [crossref]
Global tuberculosis report 2023. Geneva: World Health Organization; 2023.
Zellweger JP, Cattamanchi A, Sotgiu G. Tobacco and tuberculosis: could we improve tuberculosis outcomes by helping patients to stop smoking? Eur Respir J. 2015 [crossref]
Perriot J, Peiffer G, Underner M. Smoking and tuberculosis. RevPrat.2024 [crossref]
WHO Tobacco: Health benefits of smoking cessation. World Health Organization; 2020.
Nian T, Guo K, Liu W, Deng X, Hu X, Xu M, et al. Non-pharmacological interventions for smoking cessation: analysis of systematic reviews and meta-analyses. BMC Med. 2023 [crossref]
Lindson N, Theodoulou A, Ordóñez-Mena JM, Fanshawe TR, Sutton AJ, Livingstone- Banks J, et al. Pharmacological and electronic cigarette interventions for smoking cessation in adults: component network meta-analyses. Cochrane Database Syst Rev. 2023 [crossref]
WHO Framework Convention on Tobacco Control. World Health Organization, 2003; updated reprint, 2004, 2005.
The paper presents a four-step process for using generative AI to solve a problem, such as motivating young people to apply for a police job in a small town. Step 1 is a simulated town hall meeting to discuss the local population’s responses and issues with school safety. Step 2 is the simulated open house meeting, where AI simulates a meeting to encourage volunteering for a career in local law enforcement. Step 3 simulates four different mind- sets among potential recruits for police office and police-school officer roles. Step 4 presents a set of questions and synthesizes the four answers to each question based upon AI’s simulation of the response of each mind-set. The paper shows the power of AI to become a colleague and “knowledge worker.”
Keywords
Generative AI, Mind genomics, Police recruitment, Synthesized mind-sets
Introduction
The negative perception of law enforcement among young people is a significant factor in their decision to pursue careers in the police force. The perceived risks, challenges, and long hours can deter candidates who seek more stable and less stressful careers. This leads to fewer candidates and, in turn, to issues in meeting demands for salaries, benefits, and additional training. It should come as no surprise that the overall pool of qualified candidates may continue to shrink, making it difficult for police departments to fill vacant positions and maintain adequate staffing levels [1].
To address this issue, police chiefs should reassess recruitment strategies and identify potential barriers to attracting young people to law enforcement careers. This may involve reaching out to local schools and community organizations, offering internship programs, mentorships, and career development opportunities, and engaging young people about the benefits and opportunities of becoming a police officer [2].
To address the topic, this paper presents four strategies using generative AI as a coach and mentor. The generative AI, ChatGPT 3.5, enables the user to simulate and synthesize situations and solutions in a short time, develop insights, and then validate these insights using empirical research. As such, the paper constitutes a “vade mecum,” a guide to how one might approach this vexing problem, doing so with generative AI in a matter of 24 hours, at low cost, with the opportunity of developing critical insights about the topic along with testable suggestions.
As technology advances and automation replaces traditional jobs, the need for skilled and dedicated workers in critical roles like law enforcement becomes even more pronounced. To solve this problem, generative AI can be used to analyze and understand the underlying factors driving young people’s decisions to pursue or avoid careers in law enforcement. This data-driven approach will enable tailoring messaging, training programs, and support systems to better meet the needs and expectations of prospective candidates, ultimately increasing recruitment success.
The immediate and severe issues regarding staffing in law enforcement was brought home in an example of a town, called here TOWNX. The challenge was put forward to use a combination of generative AI and human research to address the problem. Could a system be created which could address some of the seemingly impossible-to-solve problems?
This paper presents the synthesized approach to ameliorating some of the problem, although the problem may be far from actually solvable in its entirety. Nonetheless, the structure generated here emerged with the help of generative AI (specifically ChatGPT 3.5), along with the emerging science of Mind Genomics. The paper is presented as a “work in progress,” but which can be used immediately.
The actual paper comprises four different strategies. The first two strategies deal with the reports of “meetings,” and are meant to simulate what happened, giving the reader a sense of what is going on. The second two strategies deal with mind-sets of individuals who are the likely candidates, and then questions given to these mind-sets, and how each mind-set answers the same question.
Strategy 1
The town hall meeting to discuss how the local population “came up” with answers. This strategy is based upon the book Looking Backward by author Edward Bellamy, where the forecast of what would happen in the future is written as a historical account of what had already happened.
Strategy 2
The open house meeting, where the focus was on the simulation of a meeting held to help drive volunteering to become a police officer. The vision here was to get AI to bring the reader below the surface, to discuss questions — what they really mean and how candidates might be thinking about these questions — and issues dealing with recruitment.
Strategy 3
Simulating mind-sets. The AI was told that there exist different mind-sets among the potential recruits for the police office and police-school officer roles. The AI synthesized four different possible mind-sets and provided relevant insights into the mind-sets.
Strategy 4
Creating questions about the job and then generating likely answers that each of the four simulated mind-sets would give to the same question. These are the four mind-sets used in Strategy 3. It will be the questions and answers in Strategy 3 that will be used for the empirical Mind Genomics project and reported as an accompanying paper.
Strategy 1 — A Simulated Town Meeting
A simulated town meeting with generative AI can foster creativity and innovation by providing a platform for brainstorming and idea generation. The AI can introduce new perspectives and ideas that human participants may not have considered, leading to novel solutions. Additionally, the AI can facilitate real-time collaboration and idea sharing, enabling participants to build upon each other’s thoughts and concepts. By stimulating creative thinking and encouraging out-of-the-box solutions, the simulated town meeting with generative AI can inspire innovative approaches to complex problems.
A simulated town meeting could involve a diverse group of people coming together to discuss various problems and brainstorm potential solutions. The goal is to encourage open communication, collaboration, and creativity to address complex issues facing the community. By creating a space where everyone’s opinions are heard and valued, there is the hope that innovative ideas will emerge, and practical solutions will be developed.
One potential strategy within a simulated town meeting could be to introduce generative AI that is programmed to simulate discussions about different problems and propose solutions as if they were already solved. This could help stimulate thought and generate new perspectives that human participants may not have considered on their own. The value of having AI generate solutions lies in its ability to generate ideas quickly and without bias. The AI can analyze vast amounts of data and information to offer potential solutions that may not have been considered by human participants.
However, the lack of human creativity and intuition could be a weakness of this approach. While the AI is capable of generating solutions based on existing data and knowledge, it may struggle to come up with truly innovative or groundbreaking ideas that require a high degree of creativity. Human intuition and gut instincts play a crucial role in problem-solving by guiding decision-making processes and identifying opportunities that may not be apparent through data analysis alone. By relying solely on AI-generated solutions, there is a risk of missing out on the unique insights and perspectives that human creativity can offer.
Despite the potential limitations, a simulated town meeting utilizing generative AI has the potential to be a powerful tool for problem-solving. By leveraging the strengths of AI technology, such as quick data analysis and innovative idea generation, participants can benefit from a more efficient and effective problem-solving process. This approach can help foster collaboration, creativity, and diverse perspectives within the community, ultimately leading to more sustainable and impactful solutions.
Table 1 shows how the AI was prompted. Table 2 shows the summary of eight interchanges at the simulated town hall meeting.
Table 1: Prompting the AI to simulate a town hall meeting to discuss the problem.
Table 2: Part of the summarization of the town hall meeting, showing 11 different suggested topic areas, suggested by AI-created individuals assumed to have participated. The essence of the idea is shown in bold letter.
Strategy 2 — The Open House to Identify Ways to Encourage People to Volunteer
This second strategy focuses directly on using AI to provide interesting ideas to attract prospect candidates. Rather than solving a problem, as done in Strategy 1 above, the open house strategy focuses directly on the problem and how to solve it. Furthermore, this second strategy uses AI to simulate questions that would be given by the attendee, the importance of the question, as well as the motivating power of the answer. Even if the AI cannot really “dive” into the mind of the prospective candidate, the exercise itself provides a way to prepare oneself with a structured way to approach the necessary “back-and-forth” which can transform an audience member into a candidate. Table 3 shows the prompt given to the AI. Table 4 shows the AI results, comprising 14 questions along with the four answers to each question.
Table 3: Prompt given to the AI to simulate an open house devoted to recruiting.
Table 4: Results from the AI, showing 14 questions, and the four answers to each question provided by AI.
Strategy 3 — Using AI to Synthesize Mind-Sets Regarding Police Offers Specializing in School Safety
Generative AI is a powerful tool that can help companies identify the mind-sets of individuals interested in a specific job and create appealing slogans. By defining the task and asking AI to specify these mind-sets, companies can gain valuable insight into the potential target demographic for a particular job opportunity. The AI has the computational power to analyze vast amounts of data and come up with unique and innovative ideas that may not have been considered otherwise. Additionally, AI may be able to synthesize more nuanced aspects of mind-sets that are not easily quantifiable or represented in data. One potential benefit of using generative AI is that it can help companies better target their recruiting efforts by tailoring messaging to appeal to these synthesized mind-sets. The result would be more effective recruiting campaigns and ultimately result in finding the right candidates for the job. However, limitations to the effectiveness of generative AI in this context may include biases in the data used to train the AI model, which can result in inaccurate or skewed insights.
Table 5 shows the prompts given to the AI to generate mind-sets of individuals interested in a career or at least a job in school safety. Table 6 shows four mind-sets synthesized by AI for the professionalization in law enforcement and school safety.
Table 5: Prompts given to AI to generate mind-sets of individuals interested in a career or job in law enforcement and school safety.
Table 6: Four minds-sets synthesized by AI, interested in a career or least a job in law enforcement and school safety.
Strategy 4 — Have AI Generate Targeted Messaging Appropriate for Synthesized Mind-Sets and Then Test These Messages in Mind Genomics Studies with Target Age Respondents
Based on scientific principles of experimental psychology (psychophysics), statistics (experimental design, regression clustering), and consumer research (conjoint analysis), Mind Genomics ends up allowing the user to gain a deep and actionable understanding of human decision behavior, most important in the world of the everyday. Its rigorous, data-driven world view and methods provide a comprehensive analysis of the subject population for a topic, appropriate in our case for identifying key factors young individuals consider when choosing a career in law enforcement. By creating a unique profile of the target audience based on their responses to survey questions, Mind Genomics can reveal hidden patterns and trends in their thinking and decision-making processes. This helps a person or even a “chat bot” better connect with them on a personal level. In turn, the connection helps to create targeted messaging and recruitment campaigns which each alone and more strongly together, resonate with the specific needs and desires of young police officer recruits in Pennsylvania. The companion paper will show how Mind Genomics is used to evaluate the ideas generated in Strategy 4.
Strategy 4 provides a set of 21 questions, each with four answers, one answer from each mind-set. The objective of Strategy 4 is to show how a simple set of prompts (Table 7) end up creating a rich set of 21 questions and four answers to each question (Table 8). Table 8 was created in a matter of two iterations of Idea Coach in the BimiLeap. com platform, requiring less than a minute in total.
Table 7: The prompts used to create the questions and for each question four answers, one answer from each mind-set created and discussed in Table 6.
Table 8: The 21 questions created by AI, and for each question four suggested answers, one answer from each of the four mind-sets presented in Table 6.
Discussion and Conclusions
Generative AI has the potential to revolutionize the way individuals navigate their professional paths by providing creative and inventive solutions to common obstacles faced during the process of finding employment. By hosting town hall events or recruitment nights, individuals can openly discuss their professional goals and challenges, fostering a team effort to find solutions. Generative AI creates fresh perspectives which push the boundaries of conventional career paths, allowing the opportunity to explore unconventional ideas and find career paths that align with their passions and talents. Engaging in stimulating conversations with different AI-generated mind-sets can provide a diverse array of perspectives and valuable insights, broadening knowledge of different career possibilities and opening up new avenues for one’s future.
Generative AI also has the potential to completely transform the way we learn and create. Imagine a world where individuals can tap into the power of AI to generate new ideas, innovate, and discover their creative talents in ways they never thought possible. This technology opens up a whole new world of possibilities, inspiring people to think outside the box and pursue unconventional career paths previously deemed impossible.
Generative AI provides personalized learning experiences tailored to individual interests and preferences, sparking curiosity and igniting a passion for lifelong learning. Collaborating with AI to generate fresh ideas and explore new possibilities empowers people to unleash their creativity and think in innovative ways that were previously unimaginable.
In a future where generative AI is integrated into every aspect of our lives, it has the power to revolutionize the way we acquire knowledge, encouraging individuals to explore their creative side and venture into unconventional career paths. With generative AI as a guiding force, people can imagine new possibilities, dream bigger dreams, and pursue their passions with a newfound sense of purpose and excitement. One can only imagine what will emerge then, in terms of the practicalities of creating critical thinkers in school, and then having this critical thinking be part of the package one uses to create one’s job, and one’s future.
Acknowledgment
The authors would like to thank Vanessa Marie B. Arcenas and Isabelle Porat for their help in producing this manuscript.
Wilson JM (2012) Articulating the dynamic police staffing challenge: An examination of Supply and Demand. Policing: An International Journal of Police Strategies & Management 35(2).
Wilson JM and Miles-Johnson T (2024) The police staffing crisis: Evidence-based approaches Wilson JM (2012) Articulating the dynamic police staffing challenge: An examination of for building, balancing, and optimizing effective workforces. Policing: A Journal of Policy and Practice, 18.
Purpose: Climate change poses a significant threat to human health, particularly affecting the endocrine system. This study aims to explore the impact of climate change on various endocrine pathways and its implications for morbidity and mortality rates.
Methods: A review of literature was conducted to investigate the relationship between climate change and the endocrine system. Relevant databases were searched for studies on the effects of temperature changes, air pollution, and vector-borne diseases on hormone levels and endocrine health. Factors influencing the degree of impact, such as climate-related stressors and individual susceptibility, were also examined.
Findings: Climate change exerts a notable influence on the endocrine system, leading to hormone imbalances and increased mortality rates. Direct and indirect effects of climate change events, including temperature changes, air pollution, and vector-borne diseases, contribute to these disruptions. Certain components of the endocrine system, such as the adrenal gland, thyroid gland, HPA axis, and reproductive organs, are particularly vulnerable to environmental changes.
Implications: Understanding the mechanisms by which climate change affects endocrine disorders is crucial for addressing this global health issue. Efforts to mitigate the impact of climate change on human health should consider the specific vulnerabilities of the endocrine system and prioritize interventions to minimize morbidity and mortality associated with endocrine-related conditions.
Climate change, primarily caused by human activities like greenhouse gas emissions from power generation, manufacturing, and deforestation, results in significant alterations in weather patterns and temperatures. This has profound implications for public health, increasing morbidity and mortality due to extreme temperature conditions [1,2]. Recent research spanning from 2000 to 2019 indicates that approximately 5 million deaths worldwide can be attributed to non-optimal temperatures, with a substantial portion occurring in East and South Asia, highlighting regional disparities in climate change impacts [3]. Furthermore, environmental factors influenced by climate change can impact the endocrine system, potentially leading to disruptions in hormonal balance and the development of disorders. This paper will explore the multifaceted impact of climate change on human health, shedding light on both direct consequences, such as mortality, and indirect consequences related to endocrine disorders. By examining these connections, the goal is to deepen our understanding of the challenges posed by climate change in the global public health landscape and contribute to discussions on mitigating its adverse effects to safeguard public health.
This literature review provides a comprehensive analysis of the effects of climate change on the endocrine system, an area that remains relatively unexplored in current knowledge. By mixing the results of different published studies, we explore new insights into how climate-related stressors such as temperature fluctuations, air pollution, and vector-borne diseases disrupt hormonal balance and contribute to increased morbidity and mortality. Our approach shows the direct and indirect pathways through which climate change produces its impacts and provides a detailed understanding of the mechanisms involved in such processes. This research not only fills a major gap in the literature but also highlights the urgent need to address endocrine health in the context of climate change.
Climate Change
Climate Change Mechanisms and Human Health
Climate change encompasses significant alterations in regional and global climate over time. These changes affect various climate parameters; average and peak temperatures, humidity, precipitation, atmospheric pressure, water salinity, and the shrinking of mountain and polar glaciers [4]. In 2020, the global average surface temperature rose by 0.94 degrees Celsius compared to the average between 1951 and 1980. Projections suggest that by 2100, this average could increase by 4 degrees Celsius above the average recorded between 1986 and 2005, significantly surpassing previous projections [5]. The primary driver of Earth’s warming is the emission of greenhouse gases resulting from human activities, particularly methane and nitrous oxide. These gases retain warmth within the lower atmosphere, leading to temperature increases which leads to both short-term and long-term threats to human health and well-being.
Extreme Events
Sub-Optimal Temperatures
Extremes in temperatures, both low and high, increase mortality rates. Deaths from suboptimal temperatures were estimated to be 9.43% of total deaths worldwide from 2000 to 2019 [6]. Being exposed to high temperatures is linked with an increased likelihood of emergency department visits and hospital admissions because of cardiovascular, respiratory, and endocrine disorders [7-9], the exact temperature thresholds for these health impacts may not be explicitly stated in the cited literature (Figure 1).
Figure 1: Annual average excess deaths due to non-optimal temperature and regional proportion for 2000-19 by continent and region.
Blauw and colleagues’ research, investigating the relationship between fluctuations in outdoor temperature and the prevalence of diabetes mellitus in the USA from 1990 to 2009, demonstrated that for every 1-degree Celsius increase in outdoor temperature, there could be an association with more than 100,000 new cases of diabetes in the country, Blauw also proposes that brown adipose tissue (BAT) metabolism correlates with temperature, where lower temperatures lead to increased fatty acid metabolism by BAT and increased insulin sensitivity, the opposite is hypothesized to be true. More data is needed to understand the direct link between the two [10]. This aligns with the interconnected nature of climate change and diabetes, knowing that individuals with diabetes are at a higher risk of dehydration and cardiovascular events during extreme heat. Evidence has also shown that high temperatures can trigger behavioural and mental disorders, leading to an increase in cases of anxiety, depression, and suicidal attempts [11,12]. Schwartz’s analysis of 160,062 deaths in Wayne County, Michigan, among individuals aged 65 or older found that patients with diabetes faced a higher risk of mortality on hot days, highlighting the vulnerability of this demographic to heat stress [13]. Associations were also observed between daily maximum temperatures and visits to the Emergency Department in Atlanta, Georgia, for cases of internal diseases including diabetes, emphasizing broader health implications related to rising temperatures[14]. An analysis of 4,474,943 general practitioner consultations in Great Britain spanning from 2012 to 2014 indicated increased odds of seeking medical consultation linked to high temperatures [15]. Furthermore, the African continent faces a heightened risk of rising temperatures, as projections suggest increasingly severe heat extremes occurring over shorter durations. Kapwata et al.’s findings suggest potential temperature increases of 4-6 degrees Celsius for the African region during the period 2071-2100, posing heightened vulnerability to heat-related illnesses, especially among young children and the elderly [16]. Overall, these findings underscore the urgent need to tackle the intricate interplay among climate change, rising temperatures, and the heightened susceptibility to diabetes and associated health complications.
Wildfires
High temperatures and low precipitation increase the risk of wildfires, which can directly lead to burns, injuries, and premature deaths [17]. Compounds released during wildfires, such as benzene and free radicals, can have far-reaching consequences on human health. In fact, the exposure to environmental pollutants from wildfires can disrupt the endocrine system, leading to imbalances in hormonal regulation. Specifically, the released compounds may impact the functioning of the digestive, hematopoietic, and reproductive systems, creating a cascade effect that elevates the susceptibility to endocrine disorders [18].
Floods and Storms
Floods, instigated by heavy rainfall and elevating sea levels, are one of the most prevalent and devastating natural disasters. They lead to injuries and drownings and exacerbate the risk of water and vector-borne diseases like dengue, malaria, yellow fever, and West Nile virus [19,20]. Diabetic patients have altered immune responses to different pathogens and are at risk of developing severe infections leading to increased morbidity and mortality.
Air Pollution
Air pollution results in decreased lung function in both children and adults, exacerbating the symptoms of asthma and chronic obstructive pulmonary disease (COPD). In addition, several studies have shown an association between air pollution and insulin resistance, leading to a heightened risk of developing diabetes (Figure 2) particulate matter smaller than 2.5 um increases the probability of developing diabetes and exacerbates the risk of diabetes-related complications [21,22].
Figure 2: Pathophysiology of air pollution and insulin resistance.
Food Insecurities
Extreme weather events may lead to decreased crop production, which can in turn lead to famines and malnutrition of populations leading to increased risk of infectious diseases [23].
Vulnerable Populations in Healthcare
Climate change may impact a particular section of a community more due to risk factors in those individuals. The vulnerable population in a community i.e. poor, elderly, disabled, children, prisoners, and substance abusers encounter heightened levels of mental and physical stress as a result of exposure to natural disasters. Reviews have shown that social factors affecting vulnerable individuals have been correlated with more or less capacity to adjust to changing environmental conditions and natural disasters [24]. In the upcoming decades, disparities may intensify, not solely due to regional variations in environmental changes such as water scarcity and soil erosion, but also due to disparities in economic status, society, human capital, and political influence [25].
Impact of Climate Change on Endocrine Disorders
Climate change exerts multifaceted effects on environmental factors, including temperature, pollution, and exposure to chemicals, which contribute to endocrine disruption. The interplay between these elements underscores the intricacy of the correlation between climate change and endocrine health. Temperature fluctuations, altered seasons, and extreme weather events induced by climate change can have significant repercussions on endocrine health [26]. Furthermore, altered seasonal patterns can disrupt circadian rhythms, affecting the production and regulation of hormones critical for various physiological processes. Extreme weather events, such as heatwaves or hurricanes, may cause stress responses in the body, potentially influencing the endocrine system and contributing to hormonal imbalances [27]. Climate-induced changes in food availability, quality, and contaminants also play a pivotal role in influencing endocrine disorders. Shifts in temperature and precipitation patterns can affect crop yields and nutritional content, impacting the availability of key nutrients essential for hormonal balance. Additionally, climate change may lead to the introduction of new contaminants into the food chain, potentially disrupting endocrine function. Pesticides, pollutants, and other environmental chemicals can mimic or interfere with hormones, contributing to the development of endocrine disorders [28].
Endocrine Disorders
Specific Endocrine Disorders and Climate Change
Thyroid Dysfunction: Research by Brent et al. (2010) reported that environmental agents influencing the thyroid may also trigger autoimmune thyroid disease, which is often the cause of functional thyroid disorders. Detecting abnormal thyroid function associated with environmental exposure is commonly attributed to direct effects of agents and toxicants triggering autoimmune thyroid problems with consideration to factors like thyroid autoantibody status, iodine intake, smoking history, family history of autoimmune thyroid disease, pregnancy, and medication use. Recognition of thyroid autoimmunity as a contributing factor to changes induced by environmental agents is crucial in these studies, illuminating the pathogenesis of autoimmune thyroid disease and exploring the possible influence of environmental factors in its development, a broad range of environmental pollutants can interfere with thyroid function; many of which have direct inhibition of thyroid hormone or induce detectable high levels of TSH consequently. Other substances such as polychlorinated biphenyls (PCBs) have a thyroid hormone agonist effect [29]. Additionally, air pollutants with levels as low as PM2.5 have been associated with hypothyroidism. There is robust evidence of increased cardiovascular morbidity and mortality associated with subclinical hypothyroidism (Figure 3) [30].
Figure 3: Overview of endocrine system.
Diabetes: Ratter-Rieck et al. (2023) reported that individuals with diabetes face heightened susceptibility to the dangers posed by elevated ambient temperatures and heatwaves due to impaired responses to heat stress. This is of particular concern as the frequency of extreme heat exposure has risen in recent decades, coinciding with the growing number of people living with diabetes, which reached 536 million in 2021 and is expected to rise to 783 million by 2045 [31]. Furthermore, evidence has linked PM concentrations to increased oxidative stress, impaired endothelial function, and it is also suggested that PM alters coagulation and inflammation cascades via epigenetic disruption [32].
A Chinese study concluded that higher PM10 levels are associated with an increase in mortality short term with a 5% overall mortality rate from diabetes with high levels of PM10 [32].
Reproductive Disorders: The “Lancet Countdown on health and climate change: code red for a healthy future report for 2021” emphasizes on the critical health risks posed by climate change [33], affecting human health through food shortages, water quality reduction, displacement, and increased disease vectors. The effects can manifest directly, such as heat stress and exposure to wildfire smoke impacting cellular processes, or indirectly, resulting in vector-borne diseases, population displacement, depression, and violence. It underscores the discrepancies in exposures among various sociodemographic groups and pregnant individuals. Vulnerable populations, including women, lower-income individuals, pregnant women, and children are disproportionately affected. The mechanisms underlying these effects involve endocrine disruption, reactive oxygen species induction, DNA damage, and disruption of normal cellular functions [33].
Regulatory Mechanisms
The endocrine system is regulated by feedback mechanisms involving the hypothalamus, pituitary gland, and target organs [34-36]. The feedback mechanism can be either positive or negative, depending on the effect of the hormone on the target organ [36]:
– A negative feedback mechanism occurs when the original effect of the stimulus is reduced by the output [36].
– A positive feedback mechanism occurs when the original effect of the stimulus is amplified by the output [35].
The hypothalamic-pituitary axis involves the production of hormones by the hypothalamus, which either stimulate or suppress the release of hormones from the pituitary gland [34]. Consequently, the pituitary gland produces hormones that stimulate or inhibit the release of hormones from other endocrine glands [34]. The target organs produce hormones that provide feedback, either positive or negative, to the hypothalamus and pituitary gland to regulate hormone production (Table 1) [34].
Table 1: EDC Drugs: Site of Action and Organ Impact.
EDC Name
Target Organ
Hormones Effects
Phthalates
Thyroid
Reduced free and serum T4 Increased TSH
Perchlorate
Thyroid
Inhibited Iodine uptake Inhibited thyroid synthesis Reduced neonate cognitive function
Diabetes mellitus is a condition defined by high blood glucose levels. Type 1 diabetes mellitus results from autoimmune destruction of pancreatic β-cells whereas, type 2 diabetes mellitus is due insulin resistance. Severe hyperglycemia symptoms include excessive urination, thirst, weight loss, and blurred vision. Chronic hyperglycemia can impair growth, increase infection susceptibility, and lead to life-threatening conditions like ketoacidosis or hyperosmolar syndrome. Long-term complications of diabetes include retinopathy, nephropathy, peripheral and autonomic neuropathy, cardiovascular diseases, hypertension, and lipid metabolism abnormalities [37].
Diabetes can be diagnosed using plasma glucose criteria, which include either the fasting plasma glucose (FPG) value, the 2-hour plasma glucose (2-h PG) value during a 75-gram oral glucose tolerance test (OGTT), or A1C criteria.
Thyroid Disorders
Hyperthyroidism
Hyperthyroidism is characterized by excess thyroid hormone production. Causes include thyroid autonomy and Graves’ disease, which affects younger women and the elderly [38]. Symptoms of hyperthyroidism include heart palpitations, tiredness, hand tremors, anxiety, poor sleep, weight loss, heat sensitivity, and excessive sweating. Common physical observations include tachycardia and tremor [39]. Diagnostic measures involve assessing thyroid hormone levels: elevated free thyroxine (T4) and triiodothyronine (T3), alongside suppressed thyroid-stimulating hormone (TSH) [40]. Treatment often starts with thionamide and radioiodine therapy, the latter is preferred, especially in the US, considering pregnancy risks for women [38].
Hypothyroidism
Hypothyroidism is a thyroid hormone deficiency. It occurs more frequently in women, older individuals (>65 years), and white populations, with a higher risk in those with autoimmune diseases [41,42]. Symptoms of hypothyroidism include fatigue, cold intolerance, weight gain, constipation, voice changes, and dry skin. However, the clinical presentation varies with age, gender, and time to diagnosis. Diagnosis relies on thyroid hormone level criteria. Primary hypothyroidism is defined by elevated TSH levels and decreased free thyroxine levels, while mild or subclinical hypothyroidism, often indicating early thyroid dysfunction, is characterized by high TSH levels and normal free thyroxine levels [43]. Early thyroid hormone therapy and supportive measures can prevent progression to myxedema coma [43-45].
Polycystic Ovary Syndrome (PCOS)
PCOS is a prevalent endocrine disorder among females, affecting 5% to 15% of the population. Diagnosis requires chronic anovulation, hyperandrogenism, and polycystic ovaries with Rotterdam’s criteria incorporating two of these three features [46]. PCOS is often underdiagnosed, leading to complications like infertility, metabolic syndrome, obesity, diabetes, cardiovascular risks, depression, sleep apnea, endometrial cancer, and liver diseases. Management involves lifestyle changes, hormonal therapies, and insulin-sensitizing agents [47].
Adrenal Disorders
Cushing’s Syndrome
Cushing syndrome, also known as hypercortisolism, is a condition resulting from high cortisol levels, often due to iatrogenic corticosteroid use or herbal therapies [48]. It causes weight gain, fatigue, mood swings, hirsutism, and immune system impairment. Treatment options include tapering exogenous steroids, surgical resection, radiotherapy, medications and bilateral adrenalectomy for unresectable ACTH tumors [49].
Addison’s Disease (Primary Adrenal Insufficiency)
Addison’s disease is a rare but life-threatening adrenal insufficiency. It primarily impacts glucocorticoid and mineralocorticoid production and can manifest acutely during illnesses. It is more common in women aged 30-50 and is often linked to autoimmune conditions. There are two main types of Addison’s disease: primary adrenal insufficiency, where the adrenal glands themselves are damaged, and secondary adrenal insufficiency, where the dysfunction is due to a lack of stimulation from the pituitary gland or hypothalamus [50]. Diagnosis is challenging due to its variable presentation, and it can lead to an acute adrenal crisis with severe dehydration and shock [51].
Pheochromocytoma
Pheochromocytomas are rare, benign tumors in the adrenal medulla or paraganglia, often causing symptoms like high blood pressure, headaches, heart palpitations, and excessive sweating [52]. These tumors are often linked to genetic mutations, and it is recommended that all patients undergo genetic testing. Symptoms are caused by overproduction of catecholamines. Radiological imaging helps locate the tumor and determine its spread and elevated levels of metanephrines or normetanephrines confirm the diagnosis. Surgery is the only effective therapy while drugs are used to address hypertension, arrhythmias, and fluid retention before surgery [53].
Adrenal Hemorrhage
Adrenal hemorrhage is a rare condition involving bleeding in the adrenal glands, causing a range of symptoms from mild abdominal pain to serious cardiovascular collapse. It is caused by various factors like traumatic abdominal trauma, sepsis, blood clotting issues, blood thinner use, pregnancy, stress, antiphospholipid syndrome, and essential thrombocytosis, it can occur unilaterally or bilaterally. Rapid diagnosis requires high clinical suspicion, and diagnostic techniques involve imaging and biochemical evaluations [54].
Primary Hyperaldosteronism
Also known as Conn syndrome, is a condition causing hypertension and low potassium levels due to excessive aldosterone release from the adrenal glands. It’s a common secondary cause of hypertension, especially in resistant cases and women. Diagnosis involves aldosterone-renin ratio assessment, confirmatory tests such as saline infusion tests or captopril challenge, and imaging studies like adrenal CT or MRI scans [55]. Treatment options include aldosterone antagonists, potassium-saving diuretics, surgery, and corticosteroids [56].
Medical Impact of Endocrine Disorders
Health Consequences
Cardiovascular Complications
Uncontrolled diabetes is associated with vessel damage due to atherosclerosis, which increases the risk of heart attacks and strokes [57-59]. Hyperglycemia also contributes to inflammation, oxidative stress, and endothelial dysfunction, further promoting the development of cardiovascular complications [52-54].
Metabolic Disturbances
Conditions with hormonal imbalances, like PCOS and hypothyroidism, cause weight gain and obesity. Obesity is a major risk factor for numerous health issues, including type 2 diabetes, heart disease, and joint problems [57-59].
Autoimmune Disorders
Autoimmune disorders are common in endocrine disorders such as Hashimoto’s thyroiditis and Graves’ disease [57-61]. These conditions can increase the risk of developing other autoimmune disorders, such as rheumatoid arthritis or lupus [57-59].
Quality of Life Implications
Physical Well-being
Many endocrine disorders, such as diabetes, are associated with physical symptoms such as fatigue, pain, weakness, and discomfort [62-64].
Emotional and Psychological Well-being
Hormonal imbalances affect neurotransmitters in the brain, leading to mood disorders such as depression, anxiety, and irritability [62-65].
Social and Relationship Impact
Individuals with endocrine disorders may experience social isolation due to their symptoms or the demands of managing their condition, limiting their social interactions [62-64].
Financial Burden
Treating and managing endocrine disorders often involves ongoing medical costs, medications, doctor visits, and surgical procedures. These expenses can create a financial burden on individuals and their families, impacting their overall financial well-being [62-64].
Self-esteem and Body Image
PCOS or hypothyroidism result in weight gain and changes in appearance, which may impact self-esteem and body image. Individuals with obesity-related endocrine conditions may experience societal stigmatization and discrimination, which can lead to emotional distress and lower self-esteem [62-64].
The Intersection: Climate Change and Endocrine Disorders
Endocrine Disruption Mechanisms
Endocrine Disrupting Chemicals (EDCs)
Endocrine disruptors, are foreign substances interfering with the endocrine system’s physiologic function, leading to detrimental effects. EDCs exposure may occur through food, water, and skin exposure in adults. Fatal exposure happens through placental transmission and breastfeeding. Direct effects are seen in the exposed population and subsequent generations. EDCs are the most well-known with more than 4000 agents polluting the environment [66]. EDCs mimic endocrine action by binding to a variety of hormone receptors and may act as either agonists or antagonists. Nuclear and membrane-bound receptors are typically the two messenger systems utilized by EDCs [67]. The most commonly recognized EDCs may be agricultural, and industrial chemicals, heavy metals, drugs, and phytoestrogens [66,67]. Human exposure mostly occurs through the act of consuming these substances that accumulate in fatty tissue due to their affinity for fat. Furthermore, endocrine-disrupting chemicals interfere with the production, function, and breakdown of sex hormones affecting the growth of the fetus and reproductive abilities. These factors are associated with developmental problems, infertility, hormone-sensitive malignancies, and disruptions in energy balance. Moreover, EDCs disrupt the functioning of the hypothalamic-pituitary-thyroid and adrenal axis. However, evaluating the complete extent of ECDs influence on physical health is difficult, because of the delayed consequences, diverse onset ages, and the susceptibility of certain demographics [67] (Table 2).
Table 2: Impact of Environmental Disruptors on Endocrine Pathways by Organ.
Organ
Environmental disruptor
Impact on endocrine pathways
Pituitary
Pesticides, PVC.
Precocious puberty. Delayed puberty. Disruption of circadian rhythm.
EDCs can interfere with hormonal homeostasis in different mechanisms such as affecting hormone synthesis, release, transport, metabolism, and action, mainly utilizing the structural similarity with thyroid hormones [68]. The impact of EDCs on the endocrine system is not fully understood. However, existing literature and medical research suggest an association between EDCs and endocrine disorders, with EDCs being implicated as potential causes of obesity, diabetes mellitus, and other diseases [28,69-72].
Phthalates, as a chemical commonly used in pharmaceuticals [73], have been described to have a negative association with free and total serum T4 and increased TSH levels [74] . Perchlorate, a significant EDC, mainly inhibits iodine uptake with doses as small as 5 mg/kg/day via reducing iodine uptake in the thyroid, with higher doses inhibiting thyroid synthesis [75]; its exposure risks reduced cognitive function in neonates [76] . In the adrenals, EDCs work by inhibiting or inducing enzymes, including steroid acute regulatory protein (StAR), aromatase, and hydroxysteroid dehydrogenases [77,78], involved in steroidogenesis with a minor role in aldosterone synthesis disruption [66] . Drugs like etomidate, ketoconazole, and cardiac glycosides may inhibit steroidogenesis by interfering with 11β-hydroxylase. The interference obstructs the process of converting 11-deoxycortisol into cortisol, which affects the production of glucocorticoids and mineralocorticoids (Figure 4).
Figure 4: Feedback regulation of hormone production: positive and negative.
Decreased cortisol levels impact the body’s reaction to stress and its metabolism, which may result in symptoms of adrenal insufficiency. Moreover, the interruption of aldosterone production might potentially lead to disturbances in electrolyte levels and the regulation of blood pressure. The many intricacies of this route emphasize the need of maintaining a precise hormonal equilibrium for optimal physiological functioning [66]. Furthermore, environmental toxins play a critical role in influencing reproductive health outcomes. Heavy metals and other environmental toxins can impair reproductive health in females by altering hormone function, leading to adverse reproductive health events. In males, these toxins could affect semen quality, altering sperm concentration, movement, and morphology [90,91] (Table 3).
Table 3: Climate change impact on different phases of reproductive life.
Phase
Impact Factors
Description
Preconception
Temperature Extremes
Affects fertility and sperm quality; heat stress can reduce conception rates.
Air Quality
Exposure to pollutants can reduce reproductive health and increase the risk of infertility.
Nutrition and Food Security
Poor nutrition can lead to decreased fertility; food insecurity affects overall health.
Water Quality and Availability
Contaminated water can lead to reproductive health issues; water scarcity impacts general health.
Pregnancy
Temperature Extremes
Higher risk of heat stress, preterm birth, and other complications.
Air Quality
Poor air quality can lead to pregnancy complications such as preeclampsia and low birth weight.
Nutrition and Food Security
Malnutrition can affect fetal development; food insecurity can lead to nutrient deficiencies.
Water Quality and Availability
Risk of waterborne diseases affecting maternal health.
Childbirth
Temperature Extremes
Increased risk during labor and delivery, particularly in hot climates.
Air Quality
Respiratory issues during childbirth due to poor air quality.
Water Quality and Availability
Clean water is essential for safe delivery; water scarcity and contamination can lead to complications.
Postpartum
Nutrition and Food Security
Impact on breastfeeding and recovery; malnutrition can affect milk production and maternal health.
Temperature Extremes
Heat stress can affect the health of both mother and infant.
Air Quality
Poor air quality can affect respiratory health of both mother and newborn.
Climate Change Factors Affecting Endocrine Health
Temperature Extremes and Hormonal Responses
Humans can survive in extreme environmental conditions and adapt to varying temperatures ranging from humid tropical forests to polar deserts [79,80]. Stress hormones and other stress-initiated systems have a major role in adaptive responses to environmental changes [81]. Mazzeo et al.’s study and Woods et al.’s investigation found that catecholamine and cortisol responses to physical exercise differ under conditions of hypoxia versus normoxia; with higher concentrations noted under hypoxic conditions [82,83]. The secretion of catecholamine (particularly adrenaline and noradrenaline) and cortisol during physical stress is influenced by the presence of either low oxygen levels (hypoxic) or normal oxygen levels (normoxic) in the body. When there is a lack of oxygen (hypoxia), the body responds by releasing more catecholamines, which increases the heart rate and respiratory rate. Moreover, the levels of cortisol are elevated, which promotes the mobilization of energy stores. Under typical oxygen conditions, exercise still stimulates the synthesis of catecholamines and cortisol, although the quantities may not reach the same levels as observed in low oxygen environments (hypoxia). The body’s physiological responses during physical activity are facilitated by these endocrine reactions, which are crucial for adapting to varying amounts of oxygen in the surroundings [84]. The endocannabinoids lipid mediators and N-acyl ethanolamines are closely linked to acclimation at various physiological levels, including central nervous, peripheral metabolic, and psychologic systems in response to environmental factors to achieve physiological homeostasis [85].
Environmental Toxins and Endocrine Dysfunction
Numerous epidemiological studies have indicated a link between exposure to environmental toxins and the risk of developing type 2 diabetes mellitus. Inflammation triggered by exposure to particulate matter (PM2.5) in air pollution is a prevalent mechanism that might interact with other proinflammatory factors related to diet and lifestyle, influencing susceptibility to cardiometabolic diseases [86]. Exposure to PM2.5 has been demonstrated to disrupt insulin receptor substrate (IRS) phosphorylation, leading to impaired PI3K-Akt signaling and inhibition of insulin-induced glucose transporter translocation [86] (Figure 5).
Figure 5: PM2.5 exposure impact
Foodborne toxins such as cereulide produced by Bacillus cereus might contribute to the increase in the prevalence of both type 1 and 2 diabetes through its uncoupling of oxidative phosphorylation by permeabilizing the mitochondrial membrane [87]. The production of mitochondrial ATP is crucial for generating insulin in response to glucose stimulation. Therefore, cereulide’s toxic effects on mitochondria could particularly harm beta-cell function and viability.
Altered Nutritional Patterns and Metabolic Health
Prudent diets including fruits, vegetables, whole grains, fish, and legumes have been associated with favorable effects on bone metabolism including lower serum bone resorption marker C-terminal telopeptide (CTX) in women; higher 25-hydroxyvitamin D (25OHD) and lower parathyroid hormone in men [9]. Also linked to favorable effects on glucose metabolism such as lower insulin and homeostatic model assessment insulin resistance (HOMA-IR) [9]. Consuming Western diets, characterized by the intake of soft drinks, potato chips, french fries, meats, and desserts, has been linked to adverse impacts on bone metabolism which include elevated levels of bone-specific alkaline phosphatase and reduced levels of 25OHD in women, as well as higher CTX levels in men [9]. They were also linked to higher glucose, insulin, and HOMA-IR [88].
Stress, Mental Health, and Endocrine Function
Climate-induced Stress and Hormone Levels
The primary responses to heat stress involve the activation of the hypothalamic-pituitary-adrenal axis, leading to a subsequent rise in plasma glucocorticoid levels. Epinephrine and norepinephrine are the main hormones elevated in prolonged exposure to environmental heat stress. Plasma thyroid hormones have been observed to decrease under heat stress as compared to thermoneutral conditions. Decreasing levels of thyroid hormones and plasma growth hormones have a synergistic effect in the reduction of heat production. Decreased growth hormone is necessary for survival during heat stress and Insulin-like growth factor-1 (IGF-1) has been found to be decreased during summer months [88].
Mental Health Implications for Endocrine Patients
Cortisol is a well-researched hormone in psycho-neuroendocrinology, crucial for stress-related and mental health disorders [92]. It’s assessed through serum, saliva, or urine for short-term levels, while hair cortisol can indicate long-term levels [93]. Stress triggers acute and chronic responses in cortisol release, affecting the HPA (hypothalamus-pituitary-adrenal) axis [88]. The HPT (hypothalamus-pituitary-thyroid) axis is also impacted by stress, showing transient activation and suppression with acute and chronic stressors [94]. Stress persistence is crucial in understanding stress reactions and their connection to cortisol levels and HPA axis dysfunction, which is linked to various mental disorders like major depressive disorder [95,96].
Empirical Evidence and Research Findings
Epidemiological Studies on Climate and Endocrine Disorders
Diabetes and Climate-Related Factors
Diabetes and climate change are interconnected global health challenges. Rising temperatures, heat waves, heavy rainfall, and extreme weather events are impacting diabetic patients [31,97]. These individuals exhibit heightened vulnerability to heat and climate-related stress due to impaired vasodilation and sweating responses, also diabetic patients’ susceptibility to complications will be increased [10]. Additionally, Mora et al., in their systematic review, showed that 58% of infectious agents were aggravated by climate change, posing a high risk of infections and their complications on diabetic patients with compromised immune systems [98].
Thyroid Function and Environmental Exposures
Recent research highlights the impact of environmental factors on thyroid function, assessed through TSH, FT4, and FT3 levels. Exposure to high levels of particulate matter (PM2.5) is associated with lower FT4 levels and a higher risk of hypothyroxinemia [99-101]. PM2.5, composed of fine particles carrying contaminants including heavy metals, is breathed and enters the circulation, causing disruption to thyroid function. Hypothyroxinaemia, caused by decreased levels of FT4, has a negative impact on fetal development throughout pregnancy. Exposure to PM2.5 also induces inflammation and oxidative stress, which further disrupts the control of the thyroid [102]. In adults, elevated TSH and decreased FT4 levels were associated with long-term exposure to nitric oxide and carbon monoxide [103]. Additionally, outdoor temperature was negatively linked to TSH and FT3 but positively correlated with free thyroxine and the FT4/FT3 ratio. A 10 μg/m3 increase in fine particulate matter (PM2.5) was linked to a 0.12 pmol/L decrease in FT4 and a 0.07 pmol/L increase in FT3, with a significantly negative association between PM2.5 levels and the FT4/FT3 ratio [104].
PCOS and Dietary Changes
Diet and lifestyle choices are pivotal in the development and management of PCOS. Key factors include addressing insulin resistance, considering weight and body composition, adopting a balanced diet, and the potential benefits of a low-glycemic Index (GI) diet. Tailored dietary plans aim to reduce chronic inflammation through increased antioxidant intake [105]. Additionally, research indicates a link between air pollutants, such as Q4, PM2.5, NOx, NO2, NO, and SO2, and a higher risk of PCOS, as shown by Lin et al in 2019 [106].
Case Studies in Climate-Impacted Regions
Vulnerable Populations and Healthcare Access
Climate change debates must consider demographic groups’ disproportionate healthcare access and vulnerability. Low-income communities, elderlies, children, disabled people and those with pre-existing endocrine disorders face unique climate change challenges. Climate gentrification harms vulnerable residents’ health. Environmental pollutants and endocrine disorders are more common in marginalized climate-vulnerable communities. Addressing vulnerable populations’ healthcare access disparities to reduce climate change’s endocrine and health effects is essential. Vulnerable populations in climate and health research should not be seen as homogenous due to age, health issues, geography, or time. Climate assessments should address health and inequality.
A systematic overview highlights the unique challenges faced by women in low- and middle-income countries (LMICs) due to climate change and natural disasters. The review suggests a wide range of harmful effects on female reproductive health, noting that the mean age of menarche has decreased due to climate change. Additionally, some research found a statistically significant relationship between rising global temperatures and adverse pregnancy outcomes. All of these effects are more pronounced in LMICs, which are more severely impacted by climate change [107].
Environmental Justice Considerations
Climate and endocrine diseases research must consider environmental justice which involves all socioeconomic groups in lawmaking, implementation, and enforcement. Climate-related harm is unequally distributed by population exposure, sensitivity, and adaptation [1]. Climate risks and environmental degradation disproportionately affect low-income and minority groups, who often face greater exposure to environmental hazards and have fewer resources to adapt or recover. This exacerbates health disparities and highlights the need for inclusive environmental justice policies. Additionally, there should be more consideration of vulnerable groups within these communities, who are at higher risk from climate-related events [107].
Mitigation and Adaptation Strategies
Climate Change Mitigation Efforts
There are two categories of mitigation efforts; reduction of further greenhouse gas emissions and creation of carbon sinks to decrease atmospheric greenhouse gas. The Intergovernmental Panel on Climate Change, held in March 2023, called for global action to limit worldwide temperature increase to less than 1.5 C when compared to the preindustrial period [108]. Per the World Health Organization, a global effort requires political collaborations with medical professionals, which has prompted medical representation at United Nations Framework Convention on Climate Change (UNFCCC) meetings and Conference of the Parties (COP) [109]. Local and national endocrinology groups have been promoting climate change-based policies including suggesting a climate change agenda in the 2022-2026 Environmental Protection Agency strategic guidelines in the United States of America [110].
In addition, practitioners can contribute to the fight against climate change by adopting environmentally friendly practices and promoting treatments that lead to decrease greenhouse emissions and improve health [111]. One method physicians can use is carbon accounting, where physicians measure the amount of disposable goods that have been discarded by their practice and take measures to decrease usage [112]. When ordering supplies for medical centers, physicians can consider environmentally preferable purchasing, such as focusing on reusables, which supports companies committed to mitigating the impacts of product production on climate change [113].
Personal and Community Health Measures
By recognizing the importance of lifestyle modifications for both endocrine disorders and climate change, individuals can take control of their health while actively contributing to environmental preservation. By choosing to use their muscles rather than motors, people can both lessen their release of greenhouse gases and increase their calorie expenditure. Engaging in regular physical activity stands as one of the pillars of maintaining good health; it can enhance brain health, facilitates weight management, lower the risk of various diseases, strengthens bones and muscles, and enhances the capacity to perform daily tasks [114]. Food consumption has a direct relationship with the global epidemics of Obesity and Diabetes Mellitus [115,116]. Improved dietary decisions can lead to enhanced health outcomes for both individuals and the environment. Diets rich in plant-based foods and lower in meat consumption (flexitarian diets) not only contribute to health advantages but also diminish greenhouse gas emissions originating from agriculture [117].
EDCs disrupt hormone biosynthesis, metabolism, or function, leading to deviations from normal homeostatic control or reproductive processes. There is growing evidence that these hazardous chemicals contribute to the increased prevalence of cancers, cardiovascular and respiratory diseases, allergies, neurodevelopmental and congenital defects, and endocrine disruption. The Ostrava Declaration, adopted by the Sixth Ministerial Conference on Environment and Health in 2017, encourages the substitution of such hazardous chemicals and improving information availability [118].
Policy and Advocacy in Medical Research
Government Initiatives and Regulations
Integrating Climate and Health Policies
Governmental and nongovernmental bodies around the world such as CDC, WMO, WHO, and BAMS are increasingly recognizing the link between climate change and public health. Integrating climate and health policies is essential to mitigate the adverse effects of climate change by implementing regulations to reduce air pollution, vector-borne disease control, and supporting research into climate-related health impacts [119].
Surveillance and Reporting
A study on adaptation efforts by 117 UNFCCC parties established a global baseline for adaptation trends. National Communications data unveiled 4,104 distinct initiatives. Despite advanced impact assessments and research, translating knowledge into actions remains limited. Infrastructure, technology, and innovation dominate reported adaptations. Common vulnerabilities include floods, droughts, food and water safety, rainfall, diseases, and ecosystem health. However, vulnerable sub-populations receive infrequent consideration in these initiatives [120]. Also, Greenhouse gases are one of the important factors for climate change so (MERV) guidelines which stand for minimum efficiency reporting value and consist of four guidelines which are needed for the greenhouses to accurately determine their net GHG, and other, benefits: [121].
Improve data reliability for estimating GHG benefits.
Enable real-time data to allow adjustments during the project.
Establish consistency and transparency in reporting across various project types and contributors.
Boost project credibility with stakeholders.
NGO Efforts in Medical Research
Advocacy for Environmental Health
NGOs act as catalysts in advocating for environmental health policies and practices, with a significant presence in international environmental governance. While they are recognized as essential contributors to environmental protection, there’s a lack of systematic evaluations of their roles, especially in relation to other governing bodies [122].
Promoting Evidence-Based Practices
NGOs contribute significantly to medical research by promoting evidence-based practices instead of data analysis only within healthcare systems. They work to ensure that medical interventions and treatments are based on rigorous scientific research, which ultimately leads to better patient outcomes. In addition, NGOs play a vital role in connecting scientific breakthroughs with clinical application, guaranteeing that the most recent research insights translate into tangible advantages for patients in everyday practice.
Challenges and Public Health Implications
Climate change can have a significant impact on the incidence, diagnosis, and management of endocrine disorders. For instance, exposure to extreme temperatures, air pollution, and other environmental factors can disrupt the endocrine system and lead to hormonal imbalances [123].
The public health implications of endocrine disorders are significant. These conditions can cause long-term disability, reduce the quality of life of affected individuals, and increase the risk of mortality. The burden of endocrine disorders is expected to increase in the coming years due to climate change and other factors [123].
To mitigate the effects of endocrine disorders in the context of climate change, several strategies can be employed. These include reducing exposure to environmental toxins, promoting healthy lifestyles, and investing in research to better understand the link between climate change and endocrine disorders [124]. Additionally, public health campaigns can be launched to raise awareness about the risks of endocrine disorders and the importance of early diagnosis and treatment [125].
Technology can play a crucial role in mitigating the effects of endocrine disorders in the context of climate change. For instance, digital technologies can monitor and address the increase of climate-sensitive infectious diseases, thereby safeguarding the well-being of communities worldwide [125,126]. Additionally, telemedicine can be used to provide remote care to patients with endocrine disorders, reducing the need for in-person visits and improving access to care [127]. However, the use of technology in healthcare also poses several challenges. For example, the use of electronic health records (EHRs) can lead to privacy concerns and data breaches. Additionally, the use of artificial intelligence (AI) in healthcare raises ethical concerns, such as the potential for bias and discrimination.
Future Research Directions in Medical Climate Science
Knowledge Gaps and Areas of Uncertainty
While extensive research, primarily derived from animal studies, has shed light on the potential hazards, there are critical gaps in our knowledge regarding EDCs exposure routes and threshold concentrations. Comprehensive assessments of drinking water supplies are essential to bridge these gaps. Additionally, questions persist about the long-term impacts of EDC exposure, especially during crucial developmental stages, highlighting the need for further studies to unravel these uncertainties [69].
Long-Term Health Projections
The sudden surge in metabolic disorders, reproductive abnormalities, endocrine dysfunction, and cancers raises concerns about long-term health projections. With the escalation of these diseases linked to global industrialization and the pervasive presence of EDCs in our environment, understanding the future health landscape is crucial [28]. Long-term health projections must consider the complex interplay of EDCs with human biology, emphasizing the importance of ongoing research to anticipate and mitigate potential health crises in the coming years.
Artificial Intelligence (AI) and Technological Advancements and Innovative Solutions
Machine learning models, such as the optimized Random Forest (RF) models, have emerged as powerful tools to address knowledge gaps. These models, utilizing simple descriptors and data from extensive projects, provide accurate predictions of EDC effects, enabling a better understanding of the risks associated with various substances [128]. Incorporating AI in prioritization and tiered testing workflows not only fills existing knowledge gaps but also propels us toward more efficient and precise screening processes. These advancements also facilitate the development of targeted interventions and policies, ensuring a healthier future for generations to come.
Future Perspective and Conclusion
Further research should focus on finding relationships between various endocrine disorders and different environmental factors such as climate change and environmental toxins. Extensive understanding of the causative factors will facilitate the development of medical treatments and public health policies. Embracing diverse perspectives can enhance our understanding and foster breakthroughs. To conclude, urgent action should be taken to challenge the effects of climate change on endocrine disorders; public health policies should be implemented to decrease overall exposure to endocrine disrupting chemicals by utilizing testing of various substances to reduce potential exposure in different environmental settings. Additionally, technology could be integrated into public health and preventive medicine for purposes of disease tracking and increasing accessibility to telemedicine regardless of the patient’s physical location. Although promising, other factors should be taken in consideration when technology is used such to maintain patient’s confidentiality, including privacy concerns and ethical dilemmas regarding patient data. Effective strategies demand community education, NGOs involvement, and continuous monitoring. Addressing challenges, including financial inconsistencies, requires implementing measures that promote resilience.
Declarations
Acknowledgement
The authors would like to acknowledge ACC Medical Student Member Community’s Cardiovascular Research Initiative for organizing this project.
Funding
Authors received no external funding for this project
Conflicts of Interest
Authors wish to declare no conflict of interest.
Authorship contributions
Conceptualization of Ideas: Abdulkader Mohammad, Adriana Mares, Aayushi Sood
Data Curation
Abdulkader Mohammad, Adriana Mares, Aayushi Sood
Visualization
Abdulkader Mohammad, Adriana C. Mares, Abd Alrazak Albasis, Mayassa Kiwan, Sara Subbanna
Writing of Initial Draft
Abdulkader Mohammad, Adriana C. Mares, Abd Alrazak Albasis, Mayassa Kiwan, Sara Subbanna, Jannel A. Lawrence, Shariq Ahmad Wani, Bashar Khater, Amir Abdi, Anu Priya, Christianah T. Ademuwagun MS, Kahan Mehta, Nagham Ramadan, Anubhav Sood
Review and Editing
Abdulkader Mohammad, Adriana C. Mares, Harsh Bala Gupta, Aayushi Sood
Declaration of Interest
None.
Disclosures
The authors have no conflicts of interest to disclose. 1) This paper is not under consideration elsewhere. 2) All authors have read and approved the manuscript. 3) All authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation. 4) The authors have no conflict of interest to disclose
Abbreviations: 25OHD: 25-Hydroxyvitamin D; ACTH: Adrenocorticotropic Hormone; AHA: American Heart Association; AI: Artificial Intelligence; BAMS: Bulletin of the American Meteorological Society; BAT: Brown Adipose Tissue; CDC: Centres for Disease Control and Prevention; COP: Conference of the Parties; COPD: Chronic Obstructive Pulmonary Disease; CTX: C-terminal Telopeptide; EDCs: Endocrine Disrupting Chemicals; EHRs: Electronic Health Records; FPG: Fasting Plasma Glucose; FT3: Free Triiodothyronine; FT4: Free Thyroxine; HbA1c: Hemoglobin A1c; HOMA-IR: Homeostatic Model Assessment Insulin Resistance; HPA: Hypothalamic-Pituitary-Adrenal; HPT: Hypothalamic-Pituitary-Thyroid; IRS: Insulin Receptor Substrate; IGF-1: Insulin-like Growth Factor-1; LDL: Low-Density Lipoprotein; LMICs: Low- and middle-income countries; MRI: Magnetic Resonance Imaging; MERV: Minimum Efficiency Reporting Value; NO2: Nitrogen Dioxide; NOx: Nitrogen Oxides; OGTT: Oral Glucose Tolerance Test; PCOS: Polycystic Ovary Syndrome; PG: Plasma Glucose; PI3K-Akt: Phosphatidylinositol-3-kinase-Protein Kinase B; PM2.5: Particulate Matter 2.5; SO2: Sulfur Dioxide; T3: Triiodothyronine; T4: Thyroxine; TRH: Thyrotropin-Releasing Hormone; TSH: Thyroid-Stimulating Hormone; UNFCCC: United Nations Framework Convention on Climate Change; WHO: World Health Organization; WMO: World Meteorological Organization
References
Abbass K, Qasim MZ, Song H, Murshed M, Mahmood H, Younis I (2022) A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research.[crossref]
Nations U. Causes and Effects of Climate Change | United Nations.
Zhao Q, Guo Y, Ye T, Gasparrini A, Tong S, Overcenco A, et al. (2021) Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. Lancet Planet Health.[crossref]
McMichael AJ. Globalization, climate change, and human health (2013) N Engl J Med.
Hansen J, Ruedy R, Sato M, Lo K (2020) World of Change: Global Temperatures. Reviews of Geophysics.
Zhao Q, Yu P, Mahendran R, Huang W, Gao Y, Yang Z, et al. (2022) Global climate change and human health: Pathways and possible solutions. Eco-Environment and Health.[crossref]
Zhao Q, Li S, Coelho MSZS, Saldiva PHN, Hu K, Huxley RR, et al. (2019) The association between heatwaves and risk of hospitalization in Brazil: A nationwide time series study between 2000 and 2015. PLoS Med.[crossref]
Ebi KL, Capon A, Berry P, Broderick C, de Dear R, Havenith G, et al. (2021) Hot weather and heat extremes: health risks. Lancet.[crossref]
Wu Y, Xu R, Wen B, De Sousa Zanotti Stagliorio Coelho M, Saldiva PH, Li S, et al. (2021) Temperature variability and asthma hospitalisation in Brazil, 2000-2015: a nationwide case-crossover study. Thorax.[crossref].
Blauw LL, Aziz NA, Tannemaat MR, Blauw CA, de Craen AJ, Pijl H, et al. (2017) Diabetes incidence and glucose intolerance prevalence increase with higher outdoor temperature. BMJ Open Diabetes Res Care.[crossref].
Kim Y, Kim H, Gasparrini A, Armstrong B, Honda Y, Chung Y, et al. (2019) Suicide and Ambient Temperature: A Multi-Country Multi-City Study. Environ Health Perspect.[crossref].
Khan AM, Finlay JM, Clarke P, Sol K, Melendez R, Judd S, et al. (2021) Association between temperature exposure and cognition: a cross-sectional analysis of 20,687 aging adults in the United States. BMC Public Health.[crossref].
Schwartz J. Who is sensitive to extremes of temperature?: A case-only analysis. Epidemiology 2005.[crossref]
Winquist A, Grundstein A, Chang HH, Hess J, Sarnat SE. Warm season temperatures and emergency department visits in Atlanta, Georgia. Environ Res 2016.
Hajat S, Haines A, Sarran C, Sharma A, Bates C, Fleming LE. The effect of ambient temperature on type-2-diabetes: case-crossover analysis of 4+ million GP consultations across England. Environ Health 2017.
Kapwata T, Gebreslasie MT, Mathee A, Wright CY. Current and Potential Future Seasonal Trends of Indoor Dwelling Temperature and Likely Health Risks in Rural Southern Africa. Int J Environ Res Public Health 2018.
Xu R, Yu P, Abramson MJ, Johnston FH, Samet JM, Bell ML, et al. Wildfires, Global Climate Change, and Human Health. N Engl J Med 2020.
Reisen F, Duran SM, Flannigan M, Elliott C, Rideout K. Wildfire smoke and public health risk. Int J Wildland Fire. 2015.
Parks RM, Anderson GB, Nethery RC, Navas-Acien A, Dominici F, Kioumourtzoglou MA. Tropical cyclone exposure is associated with increased hospitalization rates in older adults. Nat Commun. 2021.[crossref]
Gauderman WJ, Urman R, A E, Berhane K, McConnell R, Rappaport E, et al. Association of improved air quality with lung development in children. N Engl J Med 2015. [crossref]
Zhang S, Mwiberi S, Pickford R, Breitner S, Huth C, Koenig W, et al. Longitudinal associations between ambient air pollution and insulin sensitivity: results from the KORA cohort study. Lancet Planet Health 2021.[crossref]
Burkart K, Causey K, Cohen AJ, Wozniak SS, Salvi DD, Abbafati C, et al. Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2·5 air pollution, 1990-2019: an analysis of data from the Global Burden of Disease Study 2019. Lancet Planet Health 2022.[crossref]
Wang J, Vanga SK, Saxena R, Orsat V, Raghavan V. Effect of Climate Change on the Yield of Cereal Crops: A Review. Climate 2018.
Chen XM, Sharma A, Liu H. The Impact of Climate Change on Environmental Sustainability and Human Mortality. Environments 2023.
McMichael AJ, Friel S, Nyong A, Corvalan C. Global environmental change and health: impacts, inequalities, and the health sector. BMJ 2008.[crossref]
Kalra S, Kapoor N. Environmental Endocrinology: An Expanding Horizon. 2021.[crossref]
Darbre PD. Overview of air pollution and endocrine disorders. Int J Gen Med 2018.[crossref]
Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr Rev 2009.[crossref]
Brent GA. Environmental Exposures and Autoimmune Thyroid Disease. Thyroid 2010.[crossref]
Wright JT, Crall JJ, Fontana M, Gillette EJ, Nový BB, Dhar V, et al. Evidence-based clinical practice guideline for the use of pit-and-fissure sealants: A report of the American Dental Association and the American Academy of Pediatric Dentistry. Journal of the American Dental Association. 2016.[crossref]
Ratter-Rieck JM, Roden M, Herder C. Diabetes and climate change: current evidence and implications for people with diabetes, clinicians and policy stakeholders. Diabetologia 2023.[crossref]
Yang J, Zhou M, Zhang F, Yin P, Wang B, Guo Y, et al. Diabetes mortality burden attributable to short-term effect of PM10 in China. Environmental Science and Pollution Research 2020.[crossref]
Romanello M, McGushin A, Di Napoli C, Drummond P, Hughes N, Jamart L, et al. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. Lancet. 2021.[crossref]
Hiller-Sturmhöfel S, Bartke A. The Endocrine System: An Overview. Alcohol Health Res World 1998.[crossref]
Hoermann R, Pekker MJ, Midgley JEM, Larisch R, Dietrich JW. Principles of Endocrine Regulation: Reconciling Tensions Between Robustness in Performance and Adaptation to Change. Front Endocrinol (Lausanne) 2022.[crossref]
Peters A, Conrad M, Hubold C, Schweiger U, Fischer B, Fehm HL. The principle of homeostasis in the hypothalamus-pituitary-adrenal system: new insight from positive feedback. Am J Physiol Regul Integr Comp Physiol 2007.[crossref]
Diagnosis and classification of diabetes mellitus. Diabetes Care 2009.[crossref]
Gessl A, Lemmens-Gruber R, Kautzky-Willer A. Thyroid disorders. Handb Exp Pharmacol 2012.[crossref]
De Leo S, Lee SY, Braverman LE. Hyperthyroidism. Lancet 2016
De Leo S, Lee SY, Braverman LE. Hyperthyroidism. Lancet 2016
Aoki Y, Belin RM, Clickner R, Jeffries R, Phillips L, Mahaffey KR. Serum TSH and total T4 in the United States population and their association with participant characteristics: National Health and Nutrition Examination Survey (NHANES 1999-2002) Thyroid 2007.[crossref]
McLeod DSA, Caturegli P, Cooper DS, Matos PG, Hutfless S. Variation in rates of autoimmune thyroid disease by race/ethnicity in US military personnel. JAMA 2014.[crossref]
Wiersinga WM. Myxedema and Coma (Severe Hypothyroidism) Endotext 2018
Carlé A, Bülow Pedersen I, Knudsen N, Perrild H, Ovesen L, Laurberg P. Gender differences in symptoms of hypothyroidism: a population-based DanThyr study. Clin Endocrinol (Oxf) 2015.[crossref]
Teede H, Deeks A, Moran L. Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med 2010.[crossref]
Rasquin LI, Anastasopoulou C, Mayrin J V. Polycystic Ovarian Disease. Encyclopedia of Genetics, Genomics, Proteomics and Informatics 2022
Hirsch D, Shimon I, Manisterski Y, Aviran-Barak N, Amitai O, Nadler V, et al. Cushing’s syndrome: comparison between Cushing’s disease and adrenal Cushing’s. Endocrine 2018.[crossref]
Bornstein SR, Allolio B, Arlt W, Barthel A, Don-Wauchope A, Hammer GD, et al. Diagnosis and Treatment of Primary Adrenal Insufficiency: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2016.[crossref]
Munir S, Rodriguez BSQ, Waseem M. Addison Disease. StatPearls. 2023.[crossref]
Reisch N, Peczkowska M, Januszewicz A, Neumann HPH. Pheochromocytoma: presentation, diagnosis and treatment. J Hypertens 2006.[crossref]
Farrugia FA, charalampopoulos A. Pheochromocytoma. Endocr Regul. 2019.[crossref]
Gawande R, Castaneda R, Daldrup-Link HE. Adrenal Hemorrhage. Pearls and Pitfalls in Pediatric Imaging: Variants and Other Difficult Diagnoses 2023
Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The Management of Primary Aldosteronism: Case Detection, Diagnosis, and Treatment: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2016.[crossref]
Cobb A, Aeddula NR. Primary Hyperaldosteronism. StatPearls 2023.[crossref]
BM L, TM M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes 2015.[crossref]
Diabetes and Your Heart | CDC.
Joseph JJ, Deedwania P, Acharya T, Aguilar D, Bhatt DL, Chyun DA, et al. Comprehensive Management of Cardiovascular Risk Factors for Adults With Type 2 Diabetes: A Scientific Statement From the American Heart Association. Circulation 2022.[crossref]
Creager MA, Lüscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 2003.[crossref]
Sonino N, Tomba E, Fava GA. Psychosocial approach to endocrine disease. Adv Psychosom Med 2007.[crossref]
Sonino N, Fava GA. Psychological aspects of endocrine disease. Clin Endocrinol (Oxf) 1998
Sonino N, Fava GA, Fallo F, Boscaro M. Psychological distress and quality of life in endocrine disease. Psychother Psychosom. 1990.[crossref]
Salvador J, Gutierrez G, Llavero M, Gargallo J, Escalada J, López J. Endocrine Disorders and Psychiatric Manifestations. 2019
Guarnotta V, Amodei R, Frasca F, Aversa A, Giordano C. Impact of Chemical Endocrine Disruptors and Hormone Modulators on the Endocrine System. Int J Mol Sci 2022.[crossref]
Yilmaz B, Terekeci H, Sandal S, Kelestimur F. Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev Endocr Metab Disord 2020.[crossref]
Zoeller TR. Environmental chemicals targeting thyroid. Hormones (Athens) 2010.[crossref]
Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Prakash A, et al. Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases. Front Public Health 2020.[crossref]
Magueresse-Battistoni B Le, Labaronne E, Vidal H, Naville D. Endocrine disrupting chemicals in mixture and obesity, diabetes and related metabolic disorders. World J Biol Chem 2017.[crossref]
Ahn C, Jeung EB. Endocrine-Disrupting Chemicals and Disease Endpoints. Int J Mol Sci 2023.[crossref]
Schug TT, Janesick A, Blumberg B, Heindel JJ. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol 2011.[crossref]
Chung BY, Choi SM, Roh TH, Lim DS, Ahn MY, Kim YJ, et al. Risk assessment of phthalates in pharmaceuticals. J Toxicol Environ Health A 2019.[crossref]
Meeker JD, Calafat AM, Hauser R. Di(2-ethylhexyl) phthalate metabolites may alter thyroid hormone levels in men. Environ Health Perspect 2007.[crossref]
Greer MA, Goodman G, Pleus RC, Greer SE. Health effects assessment for environmental perchlorate contamination: the dose response for inhibition of thyroidal radioiodine uptake in humans. Environ Health Perspect 2002.[crossref]
Taylor PN, Okosieme OE, Murphy R, Hales C, Chiusano E, Maina A, et al. Maternal perchlorate levels in women with borderline thyroid function during pregnancy and the cognitive development of their offspring: data from the Controlled Antenatal Thyroid Study. J Clin Endocrinol Metab 2014.[crossref]
Hampl R, Kubátová J, Stárka L. Steroids and endocrine disruptors–History, recent state of art and open questions. J Steroid Biochem Mol Biol. 2016.[crossref]
Sargis RM. Metabolic disruption in context: Clinical avenues for synergistic perturbations in energy homeostasis by endocrine disrupting chemicals. Endocr Disruptors (Austin) 2015.
Bartone PT, Krueger GP, Bartone J V. Individual Differences in Adaptability to Isolated, Confined, and Extreme Environments. Aerosp Med Hum Perform 2018.[crossref]
Ilardo M, Nielsen R. Human adaptation to extreme environmental conditions. Curr Opin Genet Dev 2018.[crossref]
Dhabhar FS. The short-term stress response – Mother nature’s mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity. Front Neuroendocrinol 2018.[crossref]
Mazzeo RS, Wolfel EE, Butterfield GE, Reeves JT. Sympathetic response during 21 days at high altitude (4,300 m) as determined by urinary and arterial catecholamines. Metabolism 1994.
Woods DR, O’Hara JP, Boos CJ, Hodkinson PD, Tsakirides C, Hill NE, et al. Markers of physiological stress during exercise under conditions of normoxia, normobaric hypoxia, hypobaric hypoxia, and genuine high altitude. Eur J Appl Physiol 2017.[crossref]
Yilmaz M, Suleyman B, Mammadov R, Altuner D, Bulut S, Suleyman H. The Role of Adrenaline, Noradrenaline, and Cortisol in the Pathogenesis of the Analgesic Potency, Duration, and Neurotoxic Effect of Meperidine. Medicina (B Aires) 2023.[crossref]
Morena M, Roozendaal B, Trezza V, Ratano P, Peloso A, Hauer D, et al. Endogenous cannabinoid release within prefrontal-limbic pathways affects memory consolidation of emotional training. Proc Natl Acad Sci U S A 2014.[crossref]
Liu C, Ying Z, Harkema J, Sun Q, Rajagopalan S. Epidemiological and experimental links between air pollution and type 2 diabetes. Toxicol Pathol 2013.[crossref]
Vangoitsenhoven R, Rondas D, Crèvecoeur I, D’Hertog W, Baatsen P, Masini M, et al. Foodborne Cereulide Causes Beta-Cell Dysfunction and Apoptosis. PLoS One 2014.[crossref]
Aggarwal A, Upadhyay R. Heat stress and animal productivity. Heat Stress and Animal Productivity. 2013
Azzam A. Is the world converging to a ‘Western diet’? Public Health Nutr 2021
Mima M, Greenwald D, Ohlander S. Environmental Toxins and Male Fertility. Curr Urol Rep 2018.[crossref]
Mendola P, Messer LC, Rappazzo K. Science linking environmental contaminant exposures with fertility and reproductive health impacts in the adult female. Fertil Steril 2008.[crossref]
Russell G, Lightman S. The human stress response. Nat Rev Endocrinol 2019
Nadolnik LI. Stress and the thyroid gland. Biochem Mosc Suppl B Biomed Chem 2011
Staufenbiel SM, Penninx BWJH, Spijker AT, Elzinga BM, van Rossum EFC. Hair cortisol, stress exposure, and mental health in humans: a systematic review. Psychoneuroendocrinology. 2013.[crossref]
Kennis M, Gerritsen L, van Dalen M, Williams A, Cuijpers P, Bockting C. Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis. Mol Psychiatry 2020.[crossref]
Diabetes and climate change: breaking the vicious cycle. BMC Med 2023.[crossref]
Mora C, McKenzie T, Gaw IM, Dean JM, von Hammerstein H, Knudson TA, et al. Over half of known human pathogenic diseases can be aggravated by climate change. Nat Clim Chang 2022.[crossref]
Corrales Vargas A, Peñaloza Castañeda J, Rietz Liljedahl E, Mora AM, Menezes-Filho JA, Smith DR, et al. Exposure to common-use pesticides, manganese, lead, and thyroid function among pregnant women from the Infants’ Environmental Health (ISA) study, Costa Rica. Science of The Total Environment. 2022.[crossref]
Ghassabian A, Pierotti L, Basterrechea M, Chatzi L, Estarlich M, Fernández-Somoano A, et al. Association of Exposure to Ambient Air Pollution With Thyroid Function During Pregnancy. JAMA Netw Open 2019.[crossref]
Zhao Y, Cao Z, Li H, Su X, Yang Y, Liu C, et al. Air pollution exposure in association with maternal thyroid function during early pregnancy. J Hazard Mater 2019.[crossref]
Zhou Y, Guo J, Wang Z, Zhang B, Sun Z, Yun X, et al. Levels and inhalation health risk of neonicotinoid insecticides in fine particulate matter (PM2.5) in urban and rural areas of China. Environ Int. 2020. [crossref]
Kim HJ, Kwon H, Yun JM, Cho B, Park JH. Association Between Exposure to Ambient Air Pollution and Thyroid Function in Korean Adults. J Clin Endocrinol Metab. 2020.[crossref]
Zeng Y, He H, Wang X, Zhang M, An Z. Climate and air pollution exposure are associated with thyroid function parameters: a retrospective cross-sectional study. J Endocrinol Invest 2021[crossref]
Preda C, Branisteanu D, Fica S, Parker J. Pathophysiological Effects of Contemporary Lifestyle on Evolutionary-Conserved Survival Mechanisms in Polycystic Ovary Syndrome. Life 2023.[crossref]
Lin SY, Yang YC, Chang CYY, Lin CC, Hsu WH, Ju SW, et al. Risk of Polycystic Ovary Syndrome in Women Exposed to Fine Air Pollutants and Acidic Gases: A Nationwide Cohort Analysis. International Journal of Environmental Research and Public Health 2019.[crossref]
Afzal F, Das A, Chatterjee S. Drawing the Linkage Between Women’s Reproductive Health, Climate Change, Natural Disaster, and Climate-driven Migration: Focusing on Low- and Middle-income Countries – A Systematic Overview. Indian J Community Med 2024.[crossref]
Climate and Health Program | CDC
Compendium of WHO and other UN guidance on health and environment – World | ReliefWeb.
Climate Change and Health | Endocrine Society
Bikomeye JC, Rublee CS, Beyer KMM. Positive Externalities of Climate Change Mitigation and Adaptation for Human Health: A Review and Conceptual Framework for Public Health Research. International Journal of Environmental Research and Public Health 2021, Vol 18, Page 2481. 2021.[crossref]
Kwakye G, Brat GA, Makary MA. Green surgical practices for health care. Arch Surg 2011.[crossref]
Soares AL, Buttigieg SC, Bak B, McFadden S, Hughes C, McClure P, et al. A Review of the Applicability of Current Green Practices in Healthcare Facilities. Int J Health Policy Manag 2023.[crossref]
Benefits of Physical Activity | Physical Activity | CDC.
Food and Diet | Obesity Prevention Source | Harvard T.H. Chan School of Public Health.
Sami W, Ansari T, Butt NS, Hamid MRA. Effect of diet on type 2 diabetes mellitus: A review. Int J Health Sci (Qassim) 2017.
Clark MA, Domingo NGG, Colgan K, Thakrar SK, Tilman D, Lynch J, et al. Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. Science (1979) 2020.[crossref]
Chemical safety EURO.
Fox M, Zuidema C, Bauman B, Burke T, Sheehan M. Integrating Public Health into Climate Change Policy and Planning: State of Practice Update. Int J Environ Res Public Health 2019.[crossref]
Lesnikowski AC, Ford JD, Berrang-Ford L, Barrera M, Heymann J. How are we adapting to climate change? A global assessment. Mitig Adapt Strateg Glob Chang. 2015
Vine E, Sathaye J. The monitoring, evaluation, reporting, and verification of climate change mitigation projects: Discussion of issues and methodologies and review of existing protocols and guidelines. 1997
Jasanoff S. NGOS and the environment: From knowledge to action. Third World Q 1997
Crafa A, Calogero AE, Cannarella R, Mongioi’ LM, Condorelli RA, Greco EA, et al. The Burden of Hormonal Disorders: A Worldwide Overview With a Particular Look in Italy. Front Endocrinol (Lausanne) 2021.[crossref]
Climate Change and Health | Endocrine Society.[cited 2024 Feb 7]
Climate change.[cited 2024 Feb 7].
Colón-González FJ, Bastos LS, Hofmann B, Hopkin A, Harpham Q, Crocker T, et al. Probabilistic seasonal dengue forecasting in Vietnam: A modelling study using superensembles. PLoS Med 2021.[crossref]
Health Technology and Climate Change | Hoover Institution Health Technology and Climate Change.[cited 2024 Feb 7].
Collins SP, Barton-Maclaren TS. Novel machine learning models to predict endocrine disruption activity for high-throughput chemical screening. Frontiers in toxicology 2022.[crossref]
Postpartum psychosis is a unique and serious mental health challenge. Women are more vulnerable to mental illness surrounding childbirth due to genetic, hormonal and psychosocial factors. The most severe form of postpartum mental illness, postpartum psychosis affects 1 to 2 of 1,000 women or 4,000 or more women in the U.S. each year (Friedman et al.2023; Griffen 2023; Perry et al. 2021; Postpartum Support International: PSI statement on psychosis related tragedies 2004; VanderKruik et al. 2017). These mothers are at an increased risk of suicide (4 to 5 percent), and infanticide, neonaticide and filicide (1 to 4 percent). For 40 to 50 percent of those with postpartum psychosis, this is a first occurrence with no prior history of mental illness (Friedman et al. 2023; Griffen 2023; MGH Center for Women’s Mental Health: Reproductive Psychiatry Resource & Information Center 2018; Perry et al. 2021; Postpartum Support International: PSI statement on psychosis related tragedies 2004). To prevent tragic outcomes, mothers with postpartum psychosis or severe depression with psychotic features require crisis intervention, immediate hospitalization and psychiatric treatment.
The article, “The criminalization of women with postpartum psychosis: a call for action for judicial change,” published in the Archives of Women’s Mental Health, promotes postpartum criminal laws in the U.S. and abroad when criminal culpability is linked to maternal mental illness. Similarly, it is essential to include postpartum psychosis as a diagnostic criteria and classification in the Diagnostic and Statistical Manual of Mental Disorders (DSM) (American Psychiatric Association 2013; Spinelli 2021).
These changes would have enormous influence in trial and sentencing when homicide cases are a consequence of maternal mental illness.
In the U.S., the judicial system has not utilized the advancements and growing body of scientific developments regarding reproductive mental health in the last decades in psychiatry and medicine. This is evident when women with postpartum mental illness are prosecuted. In more than thirty countries worldwide, there is treatment, rehabilitation and mitigation when women commit infanticide as a consequence of psychosis and severe postpartum mental illness in the year following childbirth.
In 1938, the U.K. emphasized treatment and prevention over punishment (Infanticide Act 1938) by adopting laws safeguarding mothers suffering from postpartum depression or psychosis. Currently in the U.K and many other countries, a woman who causes the death of her child within 12 months of delivery is presumed to be mentally ill.
In the U.S., Illinois is the only state that considers maternal mental health as a factor in cases of infanticide. Public Act 100–0574 signed into law in January 2018 and amended in 2019 by PA 101– 411, recognizes postpartum depression and postpartum psychosis as mitigating factors to be considered in trial and sentencing. This law allows women who are currently incarcerated to file for resentencing and allows consideration of postpartum mental illness in past, present and future cases.
It is essential to prioritize awareness and prevention of postpartum mental illness to save the lives of mothers and babies. We must enact comprehensive postpartum laws in every state to address screening and treatment as well as to consider mental health as a mitigating factor when unrecognized and untreated mental illness leads to tragedy and involvement with the criminal justice system. The time is NOW to enact postpartum criminal laws and judicial change throughout the U.S. and abroad.
Purpose: To challenge the collaborative process in a young research team with evidence on building research collaboration in university departments.
Methods: A structured literature review was combined with a hermeneutic analysis of data from a double survey conducted during a one-week seminar. Eight Norwegian participants provided data through a Strengths, Weaknesses, Opportunities, and Threats (SWOT) template.
Results: The literature review revealed two themes 1) Building a research network, and 2) Networking across university units. A naïve reading of the double survey data showed that participants enjoyed collaborating in research networks. A structured interpretation provided a contextual report on collaborative research processes across university units working to build research collaboration.
Conclusion: Excellent research collaboration emerges through focus, flexibility, trust, persistence, and leadership. A successful research group is dependent on positive engagement between members, the acknowledgment of individual contributions and ideas; and supportive team leadership which is especially facilitated through dialogical leadership.
Keywords
Hermeneutic analysis, Literature review, Leadership, Competence development, Qualitative, SWOT
Introduction
Research collaboration refers to “the working together of researchers to achieve the common goal of producing new scientific knowledge” [1]. In this context, occupational professionals who work in research and development are strategically managed [2] to improve knowledge transfers through transformational leadership [3]. This process is critical, as research collaboration is fundamental to scholarly research success. However, it is often difficult to build a collaborative research team [4]. To clarify the characteristics of such an endeavor, this study reviewed the literature on building collaborative research teams, then compared the results using a collaborative process experienced by a young, publicly funded healthcare research team that spanned multiple university units.
Background
Our initial literature review yielded 443 articles, of which we retained 394 after removing duplicates (Figure 1). Two of the authors then conducted independent screenings, resulting in 23 for potential inclusion. After reviewing the full texts of each, the authors excluded 15 for focusing on collaboration between international teams or separate universities rather than intradepartmental collaboration. Thus, the final sample contained eight articles, with various settings in the United States, Canada, Greece, the United Kingdom, and Ireland. One article introduced a new method for developing strategic research plans [5], while another investigated several issues at a specific research center, including collaboration, multidisciplinary approaches, support, and dissemination [6]. The remaining six articles primarily discussed the experiences of their respective authors and offered relevant reflections [7-12]. No article in our final sample provided a substantial literature review on the process of building a collaborative research team across different units within the same university department. Based on the evidence from these articles, we identified two main themes, including 1) Building a research network and 2) Networking across university units. An additional literature review conducted by two of the authors, in July 2023, did not result in new publications being included, so this topic does not appear to have had recent international research focus.
Figure 1: Flowchart of the literature review process
Building a Research Network
Organizational factors are essential for building research collaboration. To achieve success, three such factors are particularly important: leadership [5-7,9,12], mentorship [5-7,9,12] and cultural background [12]. In this regard, team leaders should promote team learning, serve as role models, support a favorable climate for cooperation, explain rational decisions, and help team members attain self-efficacy [9]. Thus, skilled team leadership and support are critical provisions for a thriving collaborative research team [6]. In a specific example, Best et al. [5] found that the research community was more likely to remain engaged and informed when the team leader frequently sent informative and humorous emails. A collaborative research team provides a platform of interaction for junior and senior researchers, thus facilitating training and mentorship. In the university context, team membership also helps individual researchers avoid isolation, while providing them with more opportunities to complete their own research [6]. According to Davis et al. [12], various challenges may arise when attempting to build a university-based collaborative research team, especially given the existence of different cultural backgrounds, heterogenous responsibilities, various academic practices, cultural factors, and politics. To establish an excellent, research-intensive environment, teams should help all members discuss their methods and struggles in ways that can unite them toward common goals [6].
Networking Across University Units
A researcher’s ability to network across university units depends on their individual values [7-8,10,12], the time available for research [5-7,12] and computer technology [7]. Meanwhile, an excellent collaborative research team requires focus, flexibility, trust, persistence, and leadership, which are developed through combined personal interests and common purposes. Thus, team success requires mutual respect for individual ideas and contributions as well as transparency during each step of the process [7]. Regarding issues faced by individual researchers, four articles mentioned the challenge of finding time to contribute to research teams [5-7,12], while another noted the constraints associated with simultaneous involvement in several international projects [7]. Under such conditions, it is crucial for both the whole group and individual team members to accept varying degrees of participation at different stages [9]. Based on their experiences in the healthcare field, Best et al. [5] explained how successful research collaboration could increase individual involvement in team aims while facilitating knowledge transfers to students and patients. Three articles emphasized that computer technology is essential for maintaining cooperation across university departments [6-7,9]. In one study, Steinke et al. [7] pointed out that personal computer skills are likely to vary among team members, which may create difficulty. Moreover, the strength and quality of the internet connection may pose challenges in cases where team members need to travel or communicate from different time zones during meetings [7]. Overall, these reports suggest that managers must remain aware of how research collaboration is influenced by personal values, contextual management, mentorship, and the time needed to conduct research. At the same time, the interpersonal elements of the research process depend on mutual trust, focus, and flexibility. In addition to the literature review, we conducted a qualitative study [13] based on a double Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis. Specifically, the SWOT analysis employed a modified standard tool among Norwegian members of a university research team to identify key factors that influenced group performance; these factors were further examined to enhance strengths, optimize opportunities, improve weaknesses, and attenuate threats [14].
Method
Literature Search
We initially gathered evidence on collaborative research team building by searching databases with the assistance of a university librarian, including CINAHL, Medline in PubMed, and PsycInfo. We created search terms using different combinations of the following words: scholarly activities, research, nursing/nursing research, national relation/national cooperation, teamwork, cooperative behavior, and collaboration. For returned articles, we set the following inclusion criteria: peer-reviewed studies with abstracts/full-text articles from 2010 to 2020. These were searched using the Boolean/ phrase technique. We repeated the initial literature search in July 2023 for the time period 2020-2023 and added no new articles to our analysis and findings.
Participants in SWOT Analysis
The SWOT participants included eight members of a university research team established in 2017. Specifically, the team was comprised of four scholars, two lecturers, and two Ph.D. students, with an age range of 35 to 65 years.
Data Collection
We distributed the SWOT template on the first day of a weekly winter summit in 2019, with responses collected shortly after (100% response rate). As the survey took approximately 40 minutes to complete, it is assumed that participants gave their answers spontaneously. We repeated the data collection process on the last day; that is, after the program had ended, but before the evaluation session. Before the distribution of the SWOT template, the participants were informed about the study’s aim, the anonymity of their contribution, and their right to withdraw their written consent anytime. Each participant signed an informed consent form before data collection started. No participant withdrew their participation. In this paper, we have ensured their anonymity by using numerical designations when quoting any statements.
Data Analysis
We analyzed and interpreted the responses from participants with reference to Ricœur’s [13] theory of interpretation. This consisted of a three-level process: a naïve reading, followed by a structural analysis, and concluding with a comprehensive discussion. All authors read and reread the data from the SWOT templates [13], thus identifying a naïve understanding. In the structural analysis, we gathered sections of text (consisting of text portions across the SWOT templates) into larger units of meaning [15]. Finally, we comprehensively discussed the meaning of the text in reference to the selected theory and outcome of the initial literature search.
Results
Naïve Reading
The naïve reading indicated that the participants were responsible, cheerful, and helpful. In general, they enjoyed research collaboration. However, some participants found teamwork burdensome when certain members did not fulfill their obligations. They described new technology as exciting, noting that it streamlined their work. At the same time, good leadership was mentioned as inspiring, while the lack of leadership negatively influenced their ability to work effectively with colleagues. Participants also reported that the process of applying for research funding required too much time when compared to the research outcome, and also affected their ability to attend conferences and meet with the research team.
Structural Analysis
Our structural analysis focused on 311 statements taken from the two surveys (161 and 159 from the first and second rounds, respectively). In both surveys, dominant strengths emerged from statements the participants made about their individual characteristics (35 of 58 and 36 of 50 from the first and second rounds, respectively). On the other hand, weaknesses also emerged. For example, some participants emphasized the challenges of navigating additional tasks (19 of 42 statements from the first round), while others mentioned insufficient knowledge about methodology and scientific factors (14 of 34 statements from the second round). In both rounds, participants highlighted a major opportunity derived from the benefits of being part of a research group (15 of 28 and 19 of 32 from the first and second rounds, respectively). They also identified some threats, including those pertaining to the relationship between their aims and obligations (20 of 33 statements from the first round) and challenges between individuals and their participation in the research team (18 of 34 statements from the second round). Ultimately, we summarized the structural analysis into two themes, including 1) strengths, weaknesses, and threats to building research collaboration and 2) collaborative processes across university units. To keep track of individual statements, we assigned a unique number to each participant (i.e., numbers 1 through 8). Thus, all statements and quotations in the two following subsections are connected to the numbers of relevant participants; to further distinguish between the two rounds of SWOT template completion, we also attached the letter “b” in cases where those statements and quotations were from the second round.
Strengths, Weaknesses, and Threats to Building Research Collaboration
Frequently noted strengths included the ability to work effectively under time pressure (3, 5, 8, 4b, 5b, 6b, 8b) and adopt personal responsibility (2, 4, 7, 8, 2b, 3b, 6b, 8b). One participant stated: “Accountability is an integral part of me as a person” (2). Meanwhile, relevant qualities included courage (2), determination (6, 8, 5b, 8b), curiosity (3, 7, 6b), and commitment (2, 4, 7, 8, 2b, 3b, 4b, 6b). Another strength was the ability to both cope with deadlines and respect the deadlines of others (1, 6, 7). In both surveys, half of the participants said that too many tight deadlines could lead to issues such as pressure (1, 2, 7, 8, 8b) and sleep deprivation (1). Consequently, time pressure was considered a threat to their research activities (1, 1b, 2b, 4, 5, 8, 8b). Some participants wanted their work to be more systematic (2, 7b). For example, one said: “I’m not delivering well under strong pressure; then, I’ll be a little paralyzed” (6b). Only one participant said that she had become better at prioritizing over time (5b). Possessing competence in a specific research method was also considered a strength. In this regard, two participants said that they had extensive research competence (3b, 7b). At the beginning of the seminar, only two participants said that they lacked broad research experience (3, 8); however, four participants mentioned relevant personal weaknesses at the end of the seminar, in terms of either general research competence (3b, 6b, 8b) or a specific lack of expertise linked to quantitative methods (8b) or scientific theories (5b, 8b). Of note, half of the participants identified weaknesses in their own contributions to the research team (4, 5, 6, 8). Some also identified insufficient knowledge about methodology and a lack of fluency in speaking (1) or writing academic English (4, 5, 6, 8). One participant said: “I don’t feel that academic writing comes easy for me” (4). Three participants perceived opportunities regarding new technology, explaining that such provisions could facilitate research collaboration (2, 3, 6, 6b). While one participant said that new technology could enable more efficient work (6b), only one said that technology was an integral part of their field (2).
Collaborative Process Across University Units
As a theme, the collaborative process was focused on interpersonal relationships between participants. For example, they said that they enjoyed collaborating with others (3, 4, 2b, 4b, 8b), and had become more open-minded about each other’s perspectives through teamwork (5). They also perceived themselves as honest (7), loyal (2), and good at listening (5). One participant said that her personal weaknesses were speaking more than listening and losing patience with pessimists (7). Moreover, specific collaboration skills (4, 8, 2b, 6b, 7b, 8b) were considered essential for the development of positive collaborative processes and research networks, particularly including openness to ideas presented by other team members (1, 2, 4, 5b). When describing elements they believed were central to team collaboration, the participants used words and phrases such as encouragement (8), support for progress (8), and the ability to motivate others (6b). Openness to ideas proposed by other people was also a factor that contributed to new perspectives (7b). The participants identified multiple benefits of building research collaboration (1b, 3) and sharing experiences (1b). By jointly collecting data and writing articles, team members developed relationships that helped them enhance their research and produce high-quality publications (8, 8b). They considered research collaboration with both internal and external research partners to be desirable (2b, 8, 7b), noting its contribution to professional development (2, 7b). Other participants said that they received more advice from experienced researchers by building relationships in the research group (3b, 4, 5b), which became an arena for inspiration and support (4b).
Through these relationships, the participants gained access to a “room” where they could be open about their shortcomings and needs (7). There were also threats to building effective collaborative processes, including instances in which others dominated the group (2, 7, 1b, 2b, 4b, 6b, 8b), late (or no) responses from research group members (4, 6, 4b, 7b), the lack of ambition among participants (7, 8), and the absence of mutual trust or respect (5, 4b). Six of the eight participants said that the lack of participation from others was a possible weakness in the collaborative group process (1b, 2b, 3, 3b, 6, 6b, 7, 7b, 8b). For example, one said: “The worst thing when working in a team is when someone says they are going to do something, but they do not do it, or does it badly” (3). Five of the eight participants said that effective team management played a major role in building good collaborative relationships (2, 3, 5, 6, 7, 2b, 8b). As a point of emphasis, leadership was said to motivate and inspire relationships between group members (3, 7). By contrast, individual participants felt discounted when they believed that their leaders did not listen to them (2b, 8b). The ability to establish and maintain local, national, and international networks (7) was considered necessary for group collaboration. Other essential aspects were efforts to include (4) and connect people (2), guide and teach students (7), and teach others how to perform. For example, a phenomenological analysis was mentioned (1). One participant said that it was essential to become involved in research conducted by other members (7b).
Discussion
This study critically reviewed the recent literature on building research collaboration, then compared this evidence with the collaborative process experienced by a publicly funded healthcare research team that spanned multiple university units, as collected via a SWOT analysis. The literature review revealed two main themes:
building a research network and 2) networking across university units. The structured SWOT analysis also identified two themes:
strengths and threats in building research collaboration and
collaborative processes across university units (Table 1). In the following subsections, we incorporate a theoretical perspective to provide a comprehensive discussion that is relevant to our study aim.
Table 1: Themes identified from the literature review and local SWOT analysis
Theme
From:Literaturereview
From:LocalSWOT analysis
1
Building research network
Strengths and threats to building research teamwork
2
Networking across university units
Collaborative processes across university units
Building Research Networks
Evidence from the eight reviewed articles indicated that organizational factors could form barriers to research collaboration in the context of publicly funded specialized healthcare research teams. The SWOT participants mentioned similar issues. For example, their faculty leadership did not understand that tight time schedules influenced their ability to conduct research. As a specific hindrance, time pressure threatened their research activities because it reduced opportunities for sleep. In a previous study, Maslach and Leiter [16] found that burnout was more likely to occur when organizational demands exceeded individual capacities. Although work management abilities vary between researchers, they are still affected by relationships between the researcher, group leader, and faculty leadership [17]. Here, leadership styles matter. Autocratic leaders simply dictate group activities and work tasks [18], thus deciding how much group members should contribute without asking for their input [18]. This diminishes agency within the team, which can be solved through a more democratic leadership style that allows collaborative decision-making [18]. Our data analysis also showed that autocratic management styles could threaten research collaboration, especially when leaders demanded rapid solutions, as this further tightened the time schedule. In the literature review, four articles reported that insufficient financial support was a potential barrier [5,7,9,10]. The same problem was mentioned by three of the SWOT participants. Without funding, it can be much more difficult for researchers to test their ideas [19]. This also creates publication hardship. For example, Malhotra [20] found that most academicians in India faced considerable expenses when attempting to gain journal publication, especially in periodicals with high impact factors. However, our SWOT participants did not mention this barrier, perhaps because public universities in Norway offer publication funding.
Networking Across University Units
The SWOT analysis revealed that personal values, transformational leadership, mentorship, and access to financial resources could influence research network collaboration across university units. Interpersonal elements of the research process were also important, including mutual trust, consistent focus, flexibility, and the ability to find time for group collaboration. Previous research has also shown that collaboration groups can more easily work toward common goals when they are situated in excellent research-intensive environments (6). However, the ability to work effectively under time pressure varied considerably among our SWOT participants. Some expressed feelings of stress when navigating multiple tight deadlines, while others reported improved prioritization ability with increased experience. Mentorship can prevent burnout by helping inexperienced researchers learn how to balance different work tasks [6] and develop new skills [21]. This makes provision of mentorship especially important for young academicians. For nursing scholars, mentorship can encourage positive relational, attitudinal, behavioral, career, and motivational changes [22]. Our SWOT participants mentioned some additional barriers to research collaboration, including limited research experience and difficulties with academic English.
Of note was that four participants emphasized that their weaknesses in both research experience and academic English skills hampered their contributions to the research group, neither of which factors clearly emerged through our literature review. Nevertheless, Dorsey et al. [9] and Cohen et al. [6] said that collaborative group leaders and experienced researchers should jointly serve as role models. Functioning in such a capacity entails facilitating interactions with junior researchers, who can therefore benefit from better training and mentorship for life in academia. Differences in computer skills and internet access can affect availability, thus impacting the degree to which team members can collaborate [7]. As such, researchers should develop and employ technology to improve communication between team members who are geographically distant (Dorsey et al.[9]; Cohen et al. [6]. Moreover, collaborative groups can contact their university’s information/computer technology departments to ensure that necessary computer and web technologies are available [9]. Finally, Steinke et al. [7] recommended a backup plan if videoconferencing fails, including email correspondence or other free internet software applications. In the modern technological environment, numerous tools support collaboration and the development of professional skills in the university setting [23]. In fact, none of our SWOT participants mentioned computer technology as a barrier to the research process or group collaboration, suggesting that they worked in a technology- rich environment. At the same time, personal computers have become increasingly common in research environments.
Motivation is also essential for international collaboration [24]. In this regard, Bass et al. [25] argued that inspirational leadership with a motivational focus on personal behavior could provide meaning while challenging team members to efficiently achieve future goals. According to Anselmann and Mulder [26], transformational leadership can further help leaders identify potential areas of change and encourage necessary adjustments. However, an open-minded view of other perspectives can be interpreted as a wish to view collaborating partners as equals, which may be challenging when team members possess different skills and experiences [27]. According to our findings, mentorship can reduce problems related to time pressure and the lack of academic skills. This is greatly beneficial for inexperienced researchers, who can realize personal development, increased research productivity, and better career opportunities [28]. As a practical example, our SWOT participants expressed the desire to develop skills in writing applications under the guidance of senior members. Based on our experiences in this study, we envision opportunities for research group leaders to employ SWOT templates. Such an approach will clarify team strengths and weaknesses, which can help them customize their mentorship accordingly.
Study Strengths and Limitations
As regards strengths, this study conducted a preliminary comprehensive literature review, which became a benchmark when discussing our analysis and findings. However, there were also some limitations. First, the participants were exclusively invited to participate in the research seminar, and may have therefore been more positive and open toward both their own development and SWOT factors in general. However, the group was also comprised of novice and expert researchers, who addressed a situation that similar research teams may experience, which constitutes a strength. Second, the participants were required to complete the SWOT template within a limited time, which may have elicited superficial answers to the four explored areas. However, they were also able to build on their initial answers during the second survey round, which thus constitutes a strength in data collection, as evident in the enhanced development of their responses.
Conclusion
This study found that supportive leadership and active mentorship between experienced and inexperienced team members could facilitate the research process and increase collaboration in the context of a publicly funded specialized healthcare research team. Of note, supportive leadership is highly essential. Our SWOT participants said that their ability to motivate and support other team members depended on whether the team leader offered the same provisions. Our perception is that supportive and motivated team leaders can serve as positive role models for the entire team, thus creating a group culture that prevents non-participation or late responses from members. In most scientific endeavors, the establishment and maintenance of a collaborative research team are fundamental to success.
Implications for Nursing
Supportive leadership is highly essential for nurse researchers to flourish.
Nurse managers may not have research experience or necessary insight into the working conditions that support research collaboration
It is important to adopt a transformational leadership style in which a dialogical practice can support specialized healthcare research teams in their positions.
Conflicting Interest
None.
Disclosure
The authors report no conflicts of interest in this work.
Funding
We thank Nord University for funding a Winter Summit in 2019 and providing a grant for Mrs. Hansen to act as a research assistant for professor Uhrenfeldt in 2019-20.
Ethical Approval
No ethical approval was required for this research. The study is registered at Nord University (FSH by j.no 24.04.20).
Author Contributions
Study design: LU. Data collection (Literature search); quality appraisal and data analysis: MCH, LU, KI. Data collection (SWOT analysis): MCH supervised by LU. Manuscript preparation MCH, supervision, and critical review by LU, KI. All authors critically reviewed and approved the final manuscript.
Language Editing
This paper is edited by The Golden Pen.
References
Katz JS, Martin BR (1997) What is research collaboration? Res Pol 26: 1-18.
Rasmussen SB (2014) Potentialeledelse: om strategisk ledelse i fagprofessionelle organisationer [Potential Management]. 1st edition. Barlebo.
Bass BM, Avolio BJ (1994) Improving organizational effectiveness through transformational leadership. Thousand Oaks: Sage Publications, Inc.
Borkowski D, McKinstry C, Cotchett M, Williams C, Haines T (2016) Research culture in allied health: a systematic review. Aust J Prim Health 22: 294-303. [crossref]
Best KM, Jarrín O, Buttenheim AM, Bowles KH, Curley MAQ (2015) Innovation in creating a strategic plan for research within an academic community. Nurs Outlook 63: 456-461. [crossref]
Cohen SS, Luekens C, McCorkle R (2011) Lessons learned in research, collaboration, and dissemination in a National Institute of Nursing Research-Funded research center. J Prof Nurs 27: 153-160. [crossref]
Steinke MK, Rogers M, Lehwaldt D, Lamarche K (2018) Conducting research through cross national collaboration. Int J Nurs Pract 24. [crossref]
Garner SL, Spencer B, Beal CC (2016) Multi-institutional collaboration to promote undergraduate clinical research nursing. Nurse Educ 41(1): 49-51. [crossref]
Dorsey SG, Schiffman R, Redeker NS, Heitkemper M, McCloskey DJ, et al. (2014) National Institute of Nursing Research Centers of Excellence: a logic model for sustainability, leveraging resources, and collaboration to accelerate cross-disciplinary science. Nurs Outlook 62: 384-393. [crossref]
Conn VS, Topp R, Dunn SL, Hopp L, Jadack R, et al. (2015) Science on a shoestring: building nursing knowledge with limited funding. West J Nurs Res 37: 1256-1268. [crossref]
Zikos D, Diomidous M, Mantas J (2012) Challenges in the successful research management of a collaborative EU project. Acta Inform Med 20: 15-17. [crossref]
Davis KF, Harris MM, Boland MG (2019) Ten years and counting: a successful academic-practice partnership to develop nursing research capacity. J Prof Nurs; 35(6): 473-479. [crossref]
Ricœur P (1988) Vad är en text, (eng. From text to action). In: Kemp P, Kristensson Uggla B and Fatton M (eds) Från text till handling: en antologi om hermeneutik. Brutus Østlings Forlag,. Pg: 32-38.
NN (2020) Replication data for: Building a collaborative research network across units in the university department: a SWOT analysis. DataverseNO draft paper.
Kvale S, Brinkmann S (2015) Det kvalitative forskningsintervju. (The qualitative research interview). 3. utg., 2. oppl. ed. Oslo: Gyldendal Akademisk.
Maslach C, Leiter MP (2008) Early predictors of job burnout and engagement. J Apply PSychol 93: 498-512.
Fried BJ, Topping S, Rundall TG (2019) Groups and teams in health services organizations. In: Shortell SM, Kaluzny AD (eds) Health care management: Organization design and Behavior, 7th Edition. Beaverton: Ringgold, Inc.
Van Vugt M, Jepson SF, Hart CM, De Cremer D (2004) Autocratic leadership in social dilemmas: a threat to group stability. J Exp Soc Psychol 40: 1-13.
Hinshaw AS (2012) Nursing leadership: a concise encyclopedia. In: Feldman HR, Alexander GR, Greenberg MJ, Jaffe-Ruiz M, McBride AB, McClure ML, et al. (eds) Funding for nursing research. 2nd ed. Thousand Oaks: Springer Publishing Company.
Malhotra S (2019) Research impediments and challenges in Indian academia: conquering them ethically. Int J Adv Sci Technol 28: 514-520.
Zackariasson P (2014) Mentorship in academia. IntJ Manaj Proj Bus 7: 734-738.
Nowell L, Norris JM, Mrklas K, White DE (2017) Mixed methods systematic review exploring mentorship outcomes in nursing academia. J Adv Nurs 73: 527-544. [crossref]
Cesareni D, Sansone N (2020) Technologies for active and collaborative learning. In: Benvenuto G, Veggetti MS (eds) Psycho-pedagogical research in double-degree programme. Rome: Sapienza Universita Editrice.
Uhrenfeldt L, Lakanmaa R-L, Flinkman M, Basto ML, Attree M (2014) Collaboration: a SWOT analysis of the process of conducting a review of nursing workforce policies in five European countries. J Nurs Manag 22: 485-498. [crossref]
Bass BM, Avolio BJ, Jung DI, Berson Y (2003) Predicting unit performance by assessing transformational and transactional leadership. J Apply Psychol 88: 207-218. [crossref]
Anselmann V, Mulder RH (2020) Transformational leadership, knowledge sharing and reflection, and work teams’ performance: a structural equation modelling analysis. J Nurs Manag 28: 1627-1634. [crossref]
Casey M (2008) Partnership – success factors of interorganizational relationships. J Nurs Manag 16: 72-83. [crossref]
Sambunjak D, Straus SE, Marušić A (2006) Mentoring in academic medicine: a systematic review. J Am Med Assoc 296: 1103-1115. [crossref]
Modern sows are characterized by a high prolificacy as indicated by the increased number of total born piglets, which results in a higher pre-weaning mortality. Tonisity Px (TPx) is an isotonic protein drink administered to piglets from d2 to d8 of life during the suckling period to support intestinal health and development. The aim of the present study was to analyze the effects of TPx administration on the pre-weaning mortality under field conditions in 10 sow farms in Belgium and the Netherlands. Therefore, 10 sow farms with a pre-weaning mortality between 3.3 and 13.8% were enrolled in the study. Supplementation of Tonisity Px was compared with standard Control treatment in the same batch. Number of piglets on d2 and the day before weaning was counted and pre-weaning mortality was calculated. Subsequently, reduction in pre-weaning mortality between Control and Tonisity Px group was calculated at farm level. Based on these results, a scatterplot was designed and a trendline formula for the effect of Tonisity Px was calculated. Applying the trendline formula, an economic calculation was run to find the weaned piglets and end-nursery piglet market price for a positive return-on-investment (ROI = or > 1). Supplementation of Tonisity Px resulted in a significant reduction (P = 0.003) of pre-weaning mortality from 7.38 to 5.41%, which is a 23.40% reduction in pre-weaning mortality. Economic analysis revealed that Tonisity Px supplementation has a positive economic return-on-investment from 6.0% pre-weaning mortality onwards under the current end-nursery 25 kg piglet market prices. In conclusion, supplementation of Tonisity Px from d2-8 in the suckling period results in a 23.4% reduction in pre-weaning mortality with a positive return-on-investment from 6.0% pre-weaning mortality onwards.
Keywords
Tonisity Px, Pre-weaning mortality, Field results, Meta-analysis
Introduction
Modern sows are characterized by a high prolificacy as indicated by the increased number of total born piglets (TBP). Under Danish conditions, the number of TBP has increased from 12.9 in 2000 to 19.6 piglets per litter in 2020 [1-4]. Modern sows may commonly wean 33-35 piglets per sow per year, but herds with the highest productivity now wean more than 40 piglets per sow per year. The increased litter size is, however, accompanied by a clear decrease in the average piglet birth weight [5-9]. Moreover, due to the limited amount of available colostrum, a decrease in colostrum volume consumed per piglets could be observed [5,12]. This may increase the vulnerability of piglets born from modern high prolific sows [8], which in turn decreases livability from farrowing to weaning. In addition, the small intestine of newborn piglets undergoes major developmental changes during the first 10 days of life. Therefore, this critical period has been identified as a ‘window of opportunity’ for potential nutritional interventions to support the development of intestinal structure, including digestion, absorption and growth, and the maturation of the immune system resulting in potential lifelong effects [3,6,10,11]. These factors create an opportunity to provide supplemental nutrition in the first days of the piglets’ lives to increase livability. Tonisity Px™ (TPx) is a highly palatable isotonic protein solution that provides microenteral nutrition to the intestinal cells. Tonisity Px™ is administered as a 3% solution to neonatal piglets for a 7-day period from day 2 after birth (d2) until day 8 after birth (d8). Tonisity Px™ has been demonstrated to improve intestinal morphology with taller villi (+ 8.3%) and a thicker mucosal layer (+ 9.0%) by d9 in suckling piglets [7]. Furthermore, administration of TPx increased the abundance of beneficial bacterial populations, such as Lactobacillus and Bacteriodes species, and reduced potentially pathogenic bacterial populations, such as Escherichia coli and Prevotellaceae, in the pre-weaning period [1,2]. The aim of the present study was to analyze the effects of TPx administration during the suckling period from d2 to d8 on the pre-weaning mortality under field conditions in 10 sow farms in Belgium and the Netherlands.
Materials and Methods
Test Ingredient
The test ingredient consisted of an isotonic protein solution (Tonisity Px™; Tonisity Ltd, Dublin, Ireland), which provides easily-absorbable nutrients (glucose, amino acids, and peptides) and electrolytes that can be used directly by the enterocytes.
Study Population
Ten farrow-to-wean sow farms in Belgium and the Netherlands with an average number of 733 ± 182 productive sows (min. 200, max. 2000) were enrolled in the field study (Table 1).
The sow herds were run according to different batch-management systems (BMS), such as 1-week BMS (n = 2), 3-week BMS (n = 1), 4-week BMS (n = 6), and 5-week BMS (n = 1). The piglets were weaned at an average age of 23 ± 0.82 days of age (min. 21, max. 26). The average pre-weaning mortality was 7.4 ± 1.1% (min. 3.3, max. 13.8). All sow herds were high prolific with 15.5 live born piglets (LBP) and 32.1 piglets weaned per sow per year.
Table 1: Description of the relevant farm characteristics (obtained prior to the study enrollment) of all 10 sow farms included in the trial comparing standard piglet treatment to supplementation of Tonisity Px (Tonisity Ltd, Dublin, Ireland).
Farm ID
# Sows
Breed
BMS1
Weaning age
% PWM2
LBP3
PSY4
Standard program
A
800
DanBred
4
21
7.4
15.67
32.60
Electrolyte solution
B
250
Topigs-Norsvin
1
26
3.9
14.83
31.23
No supplementation
C
400
Topigs-Norsvin
4
21
10.0
14.53
29.22
No supplementation
D
200
DanBred
4
21
4.9
16.41
35.17
No supplementation
E
1,150
DanBred
1
26
13.8
16.00
30.38
Water
F
2,000
Topigs-Norsvin
4
21
3.3
15.52
33.72
No supplementation
G
1,000
DanBred
4
21
5.3
16.61
35.47
No supplementation
H
1,000
DanBred
4
21
5.3
14.82
33.17
No supplementation
I
280
Hypor
3
26
8.6
15.01
29.45
No supplementation
J
250
Topigs-Norsvin
5
28
11.3
15.45
30.12
No supplementation
1BMS: Batch Management System 2PWM: Pre-Weaning Mortality 3LBP: Live Born Piglets 4PSY: Piglets Weaned per Sow per Year
Experimental Design
Litters within the same farrowing batch were allocated to one of 2 groups, Control or supplementation with TPx. The allocation was balanced according to sow parity (gilts vs. older sows) and number of LBP. In 8 out of 10 sow herds, the piglets in the Control group did not receive any supplementation. However, in farm A, the Control group received a supplementation with a standard electrolyte solution, and in farm E, the Control group was supplemented with water during the study period from d2 to d8. Litters in the TPx group were given 250 mL of 3% TPx solution on d2 of age, and from d3-8 of age TPx litters received 500-600 mL of 3% TPx once daily in a clean waterbowl.
Measurements
The number of piglets per litter was counted at d2, the start of TPx administration, and at the day prior to weaning. Pre-weaning mortality was calculated per litter and per batch as the number of dead pigs pre-weaning divided by the number of piglets at d2.
Meta-Analysis
The PWM results obtained in the Control and TPx group were plotted and a trendline was calculated for both the Control and TPx group. Based on the trendline formula of the TPx group, a simulation was performed on potential PWM reduction within the range of 4 to 15% PWM under field conditions. These data were subsequently applied to run an economic calculation for return-on-investment (ROI) of the test product.
Economic Calculations
Return-on-investment calculations were performed based on the number of extra piglets per 1000 piglets enrolled by TPx administration. The cut-off value of weaned and end-nursery piglet market price was calculated for a ROI value of 1.
Therefore, the following formula was used based on the cost of treatment for 1000 piglets enrolled: y = 390 / x, with x = number of extra piglets per 1000 piglets enrolled and y = cut-off value of weaned piglet market price. The cut-off value of end-nursery piglet market price was calculated by adding € 25.00 to the cut-off value of weaned piglet market price.
Statistical Analysis
Data were analyzed using JMP 17.0 and results were significant at P < 0.05.
Results
Pre-weaning Mortality
The results on pre-weaning mortality in both Control and TPx groups, including the overall percentage of reduction in pre-weaning mortality in the 10 farms enrolled in the study are given in Table 2.
Supplementation of TPx resulted in a significant (P = 0.003) reduction in PWM as compared to the Control group. In the Control group, PWM was between 3.3 and 13.8%, whereas in the TPx group PWM was between 2.7 and 8.6%. The overall percentage of reduction varied between 5.1% at minimum and 37.7% at maximum.
Table 2: Pre-weaning mortality and overall reduction in pre-weaning mortality in the farms enrolled in the study evaluating Tonisity Px supplementation from day 2 to 8 versus a standard on-farm program for the neonatal piglets.
Farm ID
PWM control (%)
PWM Tonisity Px (%)
% PWM reduction
A
7.4
5.7
23.0
B
3.9
3.7
5.1
C
10.0
5.6
44.5
D
4.9
3.3
32.7
E
13.8
8.6
37.7
F
3.3
2.7
17.2
G
5.3
4.7
10.8
H
5.3
4.0
23,8
I
8.6
8.6
10.9
J
11.3
8.1
28.3
Pre-weaning Mortality According to Breed, Weaning Age and Number of Live Born Piglets
Further detailed analysis of PWM according to breed, weaning age and number of live born piglets in both Control and TPx group are given in Table 3.
For sow breeds, DanBred sows in the Control group had an average PWM of 7.99% in contrast to other breeds (Topigs-Norsvin, Hypor) had a PWM of 6.47%. In the TPx group, both sow breeds had a lower PWM of 5.73% and 4.92% for DanBred and other breeds, respectively.
For weaning age, litters weaned at 21 days of age had a lower PWM (6.03%) as compared to litters weaned at a later age of 26-28 days (9.41%) in the Control group. In the TPx group, PWN decreased to 4.33% and 7.02% for litters weaned at 21 and 26-28 days of age, respectively.
For number of live born piglets, litters with an LBP < 16 piglets had a lower PWM (6.92%) as compared to litters with an LBP ≥ 16 (7.84%) in the Control group. In the TPx group, PWM decreased to 5.00% and 5.82% for litters with an LBP < 16 and an LBP ≥ 16, respectively.
Table 3: Detailed analysis of overall percentage of PWM in control and Tonisity Px supplemented group, considering sow breed (DanBred vs. other breeds), weaning age (early 21 d vs. late 26-28 d), and number of live born piglets (low LBP < 15.5 vs. high LBP ≥ 15.5). Significant differences at P < 0.05 are indicated with a different letter in supercript.
Parameter
PWM control (%)
PWM Tonisity Px (%)
% PWM reduction
All farms
7.38 ± 1.11
5.41 ± 0.67
23.40 ± 4.01
Sow breed
DanBred
7.99 ± 1.52
5.73 ± 0.89
26.04 ± 3.79
Other breeds
6.47 ± 1.71
4.92 ± 1.10
19.44 ± 8.71
Weaning age
21 d
6.03 ± 1.98
4.33 ± 0.50a
25.33 ± 4.85
26-28 d
9.41 ± 2.12
7.02 ± 1.12b
20.51 ± 7.55
Live born piglets
LBP < 16
6.92 ± 1.84
5.00 ± 1.04
24.27 ± 4.91
LBP ≥ 16
7.84 ± 1.41
5.82 ± 0.91
22.52 ± 6.92
Meta-analysis of Pre-weaning Mortality Data
The scatterplot of percentage PWM in Control and TPx group of the 10 farms enrolled in the study demonstrates the reduction in PWM percentage following supplementation of TPx from d2 to d8 (blue trendline) as compared to the PWM in the Control group (orange line) (Figure 1). The trendline formula obtained based on the results was: y = 0.5581 x + 0.0129 with an R² of 0.8561. This trendline formula will be used in the simulations for the economic calculation of ROI following supplementation of TPx in different scenarios of PWM percentages.
Figure 1: Scatterplot of percentage PWM in Control and Tonisity group of the10 farms enrolled in the study. Orange squares, datapoints of the Control group; blue squares, datapoints of the Tonisity Px supplemented group in relation to their initial percentage of PWM. Trendline shows the correlation between initial percentage of PWM (Control) and the percentage of PWM obtained following supplementation with Tonisity Px.
Economic Calculations
The simulation of PWM reduction following supplementation of TPx based on the trendline formula obtained in relation to the initial on-farm PWM with calculation of the number of extra pigs per litter and per 1000 born piglets based on the PWM reduction is given in Table 4. Simulation with the obtained trendline formula using an initial PWM ranging from 4.0% to 15% resulted in calculated PWM with TPx application from 3.52% to 9.66%, which was equal to a PWM reduction percentage of 11.9 to 35.6%. Based on these numbers, the number of extra piglets per litter and per 1000 piglets born were calculated. At 4.0% initial PWM, a reduction of 11.9% resulted in 0.08 extra piglets per litter and 5 extra piglets per 1000 piglets born.
Applying the formula y = 390/x, we obtained a weaned piglet price at ROI = 1 breakpoint of € 81.66 and of € 106.66 for end-nursery piglet price. Based on current market prices for weaned piglets and end-nursery piglets (20 September 2024; Flemish piglet price), TPx supplementation has an ROI of 1 or more starting from a PWM percentage of at least 6.0% (indicated by the dotted red line on the figure) (Figure 2).
Table 4: Simulation of PWM reduction following supplementation of Tonisity Px based on the trendline in relation to the initial on-farm PWM with calculation of the number of extra pigs per litter and per 1000 born piglets based on the PWM reduction. Calculation of weaned piglet price and piglet price end-nursery (25 kg) in relation to the return-on-investment breakpoint (ROI = 1.0) based on the average cost of Tonisity Px for 1000 supplemented piglets.
Initial PWM
PWM Tonisity Px
Simulated PWM reduction
Extra piglets/litter
Extra piglets per 1000 piglets born
Weaned piglet price at ROI = 1 breakpoint (€)
Piglet price end-nursery at ROI = 1 breakpoint (€)
4.0%
3.52%
-11.9%
0.08
5
€ 81.66
€ 106.66
5.0%
4.08%
-18.4%
0.15
9
€ 42.41
€ 67.41
6.0%
4.64%
-22.7%
0.22
14
€ 28.65
€ 53.65
7.0%
5.20%
-25.8%
0.29
18
€ 21.63
€ 46.63
8.0%
5.75%
-28.1%
0.36
22
€ 17.37
€ 42.37
9.0%
6.31%
-29.9%
0.43
27
€ 14.51
€ 39.51
10.0%
6.87%
-31.3%
0.50
31
€ 12.46
€ 37.46
11.0%
7.43%
-32.5%
0.57
36
€ 10.92
€ 35.92
12.0%
7.99%
-33.4%
0.64
40
€ 9.72
€ 34.72
13.0%
8.55%
-34.3%
0.71
45
€ 8.75
€ 33.75
14.0%
9.10%
-35.0%
0.78
49
€ 7.96
€ 32.96
15.0%
9.66%
-35.6%
0.85
53
€ 7.31
€ 32.31
Figure 2: Analysis of return-on-investment breakpoint (ROI = 1) related to market price of weaned piglets (6 kg; orange bars) and piglets at end of nursery (25 kg; green bars). The dashed red line is set at the piglet price (25 kg, end of nursery) of € 56.50 which is the current market price for end-nursery 25 kg piglets (20.09.2024; Flemish piglet price).
Discussion
Supplementation of Tonisity Px from d2 to d8 of life resulted in a significant (P = 0.003) reduction of PWM as compared to a simultaneous Control group in 10 farms with difference in management approach under field conditions. This observation is in line with previous studies on the effect of TPx (Carlson et al., 2019). In 8 out of 10 farms, PWM reduction due to TPx was compared to a non-supplemented Control group, whereas in 2 farms a standard supplementation of plain water or electrolyte solution was applied in the Control group. Moreover, the effect of TPx supplementation was evaluated in different sow breeds, such as DanBred (n = 5), Topigs-Norsvin (n =4) and Hypor (n = 1). These breeds are known to be highly prolific which can be confirmed by the high number of LBP (15.01 to 16.41 LBP per litter) and the number of piglets weaned per sow per year (29.22 to 35.47 PSY). As expected, farms with an already low PWM could only observe a mild to moderate further reduction in PWM (5-10%), whereas farms with a rather high PWM had a major reduction in PWM (37-44%).
Detailed analysis on TPx effect related to sow breed, weaning age and number of LBP revealed that in all scenarios, TPx supplementation resulted in a decrease of PWM percentage as compared to the Control. As observed in practice, DanBred sows have a higher PWM as compared to other breeds such as Topigs-Norsvin and Hypor. As expected, TPx supplementation resulted in a higher PWM reduction (26.04%) in DanBred sows as compared to other sow breeds (19.44%). Litters weaned at 26/28 days of age had a more than 50% higher PWM both in the Control and TPx group as compared to litters already weaned at 21 days of age. There is no clear explanation for this observation. Since most of the PWM occurs in the first 3-5 days of life, length of the lactation period should not further impact PWM. The difference in PWM for litters with more or less than 16 LBP was very limited, as was the reduction in PWM following TPx supplementation. Indeed, all 10 selected farms were highly prolific and therefore the range of LBP was quite limited (15.01 to 16.41 LBP per litter).
Analysis of the scatterplot of PWM percentage in the Control and TPx group resulted in a trendline formule of y = 0.5581 x + 0.0129 with 85.61% of the changes in y (PWM supplementing TPx) that could be explained by changes in x (PWM under standard control situation). Application of this trendline formula in a simulation with control PWM ranging from 4.0 to 15.0% resulted in a presumed PWM supplementing TPx ranging from 3.52 to 9.66%. It could be observed that a gradual increase in PWM reduction was present with higher initial PWM. Based on these data both the number of extra piglets per litter and per 1000 piglets born could be calculated (Table 4). These data were used to calculate the minimal piglet market value for a ROI of 1, both in weaned piglets, which are not regularly sold onto the market under our local Belgian and Dutch conditions, and end-nursery piglets sold at 25 kg standard weight. Further comparison of these end-nursery piglet prices to the current piglet market prices (Flemish pig price, 20.09.2024) demonstrated that TPx supplementation can result in a positive ROI (ROI equal to or higher than 1) from 6.0% PWM onwards.
Conclusions
The administration of TPx from d2 to d8 during lactation resulted in a significant reduction of PWM in 10 farms under field conditions in Belgium and the Netherlands. Supplementation of TPx resulted in a positive ROI (= or > 1) when PWM at farm level was equal to or higher than 6.0% under current end-nursery piglet market prices.
Abbreviations
PWM: Pre-Weaning Mortality; TPx: Tonisity Px™; d2: Day 2 After Birth; d8: Day 8 After Birth; TBP: Total Born Piglets; LBP: Live Born Piglets; ROI: Return-On-Investment
References
Buzoianu S, Firth AM, Putrino C, Vannucci F (2020) Early-life intake of an isotonic protein drink improves the gut microbial profile of piglets. Animals 10: 879-892. [crossref]
Buzoianu S, Putrino C, Firth AM (2019) The effects of administering Tonisity Px™ isotonic protein drink to piglets on gut microbiota as assessed through 16S rRNA sequencing. Proceedings 50th Annual Meeting of American Association of Swine Veterinarians. Orlando, Florida, US. p. 124-127.
Carlson A, Eisenhart M, Bretey K, Buzoianu S, Firth AM (2019) Early-life administration of Tonisity Px™ isotonic protein drink to pigs improves farrowing livability and growth to end-nursery. Proceedings 50th Annual Meeting of American Association of Swine Veterinarians. Orlando, Florida, US. p. 119-123.
Danish Pig Research Center. 2001-2020. Combination of key figures of production performance in Danish swine herds between 2000 and 2020. SEGES, DPRC.
Devillers N, Farmer C, Le Dvidich J, Prunier A (2007) Variability of colostrum yield and colostrum intake in pigs. Animal 1: 1033-1041. [crossref]
Everaert N, Van Cruchten S, Weström B, Bailey M, Van Ginneken C. Thymann T, Pieper RA (2017) A review on early gut maturation and colonization in pigs, including biological and dietary factors affecting gut homeostasis. Animal Feed Science and Technology 233: 89-103.
Firth AM, Lopez Cano G, Morillo Alujas A (2017) Effect of Tonisity Px™ administration on intestinal morphology. Proceedings 48th Annual Meeting of American Association of Swine Veterinarians. Denver, Colorado, US. p. 310-311.
Krogh U (2017) Mammary plasma flow, mammary nutrient uptake and the production of colostrum and milk in high-prolific sows – impact of dietary arginine, fiber and fat. Aarhus University, Denmark.
Moreira RHR, Palencia JYP, Moita VHC, Caputo LSS. Saraiva A, Andretta I, Ferreira RA, de Abreu MLT (2020) Variability of piglet birth weights: a systematic review and meta-analysis. Journal of Animal Physiology and Animal Nutrition 104: 657-666. [crossref]
Pluske JR (2016) Invited review: aspects of gastrointestinal tract growth and maturation in the pre- and postweaning period of pigs. Journal of Animal Science 94: 399-411.
Pluske JR, Turpin DL, Kim JC (2018) Gastrointestinal tract (gut) health in the young pig. Animal Nutrition 4: 187-196. [crossref]
Vadmand CN, Krogh U, Hansen CF, Theil PK (2015) Impact of sow and litter characteristics on colostrum yield, time for onset of lactation, and milk yield of sows. Journal of Animal Science 93: 2488-2500. [crossref]
Introduction: Cleft palate is a common congenital defect with several described surgical repairs. It is generally an isolated congenital abnormality but can be associated with multiple syndromes. Although there are a multitude of surgical options, many are variations of a previously described repair, and the most successful treatment modality remains a controversy.
Case Summary: The patient, a man, age 25 years old, had a Class III cleft lip and palate Veau classification, underwent a modified palatoplasty and acquired a favourable palatopharyngeal closure function, decreased hemorrhage and swelling.
Conclusion: In this study, we provide a modified palatoplasty for all palate cleft variations, it may benefit for uvula intact, reduce bleeding and swelling.
Cleft of the palate, CP, is one of the most prevalent orofacial birth defects around the world occurring in about 0.33 in every 1000 live births regardless of race, and there was no significant difference between men and women [1,2]. The cleft palate is generally an isolated congenital abnormality but can be associated with other anomalies or multiple syndromes, with or without the presence of lip or alveolar clefting [3]. According to the Veau classification, the cleft palate is divided into four groups depending on the extent of involvement: Group I is limited to the soft palate only; Group II involves the soft and hard palates; Group III includes the soft and hard palate as well as the lip; and Group IV is bilateral complete clefts Figure 1 [4].
Figure 1: Veau classification. A class I. defects of the soft palate only; B class II. Defects involving the hard palate and soft palate; C class III. Defects involving the soft palate to the alveolus, usually involving the lip; D class IV. Complete bilateral clefts.
Congenital palate defect is caused by disturbed embryonic development when the palatal shelves fail to fuse during the 6th~12th week of pregnancy [5]. It is multifactorial, influenced by genetic factors recessive or incompletely dominant polygenic inheritance and exogenous factors drugs, folic acid deficiency, viral infections, etc [6]. It has been difficult to point to a single etiologic mechanism responsible for this complex trait, resulting in severe speech, nutrition, and mental and social developmental disorders that significantly reduce patients’ quality of life [7].The diagnosis of cleft palate is not difficult because of its obvious features. Treatment of cleft palate ordinarily requires multiple interventions spanning time from birth to adulthood [8]. However, current treatment for this disease generally demands early surgery and face reconstruction procedures that may be revised during childhood and infancy, causing a great number of patient complaints and economic burdens on health systems that need to be minimized [9]. In this study, we report a modified operation of palatoplasty that provides a choice for these patients to shorten operation time, and reduce intraoperative bleeding, trauma, and postoperative swelling.
Case Report
A 25-year-old Chinese man came with a congenital cleft of lip and palate, he received lip repair in the local hospital when he was 4 years old. However, palatal repair was suspended because of a lack of money. Nowadays, the patient was referred to our hospital for palatal cleft repair which significantly affects pronunciation. The patient denied other abnormal parts of the body and his parents are both normal. After comprehensive examination and imaging evaluation by a professional maxillofacial surgeon, he was diagnosed with CP group III, Class III skeletal pattern malocclusion, microdontia, defect of dentition, and dental cavity Figure 2. At this time, the patient only wanted to receive palatal cleft repair.
Figure 2: Clinical information of the patient. A-C the profile photo of the patient; D-F the itro-oral film of the patient; G the computerized tomography imaging of the patient.
A cleft of the soft and hard palate with cleft lip postoperative was seen in our patient. Our modified palatoplasty involves: 1. relaxing incisions along the lateral edge of the hard palate, starting anteriorly near the palatomaxillary suture line, going posteriorly just medial to the alveolar ridge, and ending lateral to the hamulus, approximately to the tuberosity of the alveoli. 2. The incision posterior to the maxillary tuberosities was widened by blunt dissection, the hamulus was identified and the hamulus pterygoideus was broken. 3. The mucosa along the edges of the cleft starting at the palatal alveolar to anteriorly 5 mm of uvula was also incised Figure 3A and 3B. 4. The entire mucoperiosteum was then raised from the oral surface of the hard palate; care was taken to preserve the two neurovascular pedicles, the greater palatine pedicle posteriorly and the incisive pedicle anteriorly. Thus, bi-pedicled mucoperiosteal flaps were created on both sides of the cleft Figure 3C. 5. Three layers, including an oral mucosal layer, muscle layer, and nasal layer were dissected which tends to relieve tension on the repair and reduce the postoperative fistula rate. 6. Firstly, the nasal side of the cleft was closed, using redundant mucoperiosteum from the incision along the cleft edge Figure 3D. 7. Secondly, residual mucosa along the edges of the cleft uvula fissa was incised, and seamed the nasal layer. 8. Next, the muscle layer was closed approximately using an intravelar veloplasty. 9. Lastly, the bi-pedicled oral mucosal flaps were approximated to cover the oral surface of the cleft Figure 3E. A month later, the patient returned to our clinic, the palatine mucosa was integrity and the uvula recovered Figure 3F. The speech quality of this man was also improved and had a good velopharyngeal function (Figure 4).
Figure 3: Surgical procedures of the patient and postoperative manifestation. A-E the operative procedues of the patient; F one month postoperative follow-up of the patient.
Figure 4: Traditional surgery and modified operation. (A) a-c the traditional surgery of the palatoplasty; (B) d-g the modified surgery of the palatoplasty.
Discussion
The goals of palatoplasty are to acquire complete and intact closure of the palate and restoration of the velopharyngeal sphincter. Besides, reducing hemorrhage, avoiding palatal fistula, and decreasing postoperative swelling also should include care. After decades, there are many techniques for cleft palate repair and each has its advantages. To repair the soft palate, Intravelar Veloplasty, and Furlow Double-Opposing Z-Plasty are widely applied [10,11]. To repair the hard palate, the Von Langenbeck Palate palatoplasty, Veau-Wardill-Kilner palatoplasty, Two-Flap palatoplasty, and Vomer Flap techniques are employed around the world [11-14]. Nonetheless, the most successful treatment modality remains controversial. According to Veau classifications, surgeons are recommended to choose appropriate surgical techniques for the patients after evaluating the results as they see fit to provide the best functional outcomes for their patients [15]. However, all the techniques above mentioned may cause uvula injury due to incision without suture immediately and improve the occurrence of velopharyngeal incompetence. The rate of oronasal fistula following primary cleft palate surgery was about 3.8~6.1% [16]. In this study, we raise a modified palatoplasty: delayed incision of the uvula and earlier suture of the nasal layer. It is beneficial for uvula integrity, reducing uvula tears, and decreasing hemorrhage and swelling.
Fusion of particular orofacial structures during early gestation is required for proper development of the upper lip and jaw. Failure of this process leads to an orofacial cleft, which manifests as a gap in the tissue of the upper lip, the palate, or both [17]. Treatment of cleft lip and palate ordinarily requires multiple interventions spanning the time of birth to adulthood [18]. This process includes a multidisciplinary evaluation, involving pediatric dentists, oral and maxillofacial surgeons, orthodontists, prosthodontists, speech therapists, and psychological consultation teachers. In this study, our patient only underwent the necessary surgery because of financial difficulty, we sincerely advise he achieve serial therapy shortly.
Conclusion
We preferred the modified palatoplasty for all cleft variations. The use of modified palatoplasty in the cleft palate seems to contribute to a reduction of hemorrhage, uvula varies, and postoperative swelling.
Acknowledgement
Cailing Jiang contributed to the conception, design, analysis and interpretation of data, and drafting of this article. Chong Jiang, Zijun Guo and Haiyou Wang contributed to data collection and analysis. Sui Jiang contributed to the conception and design, critical review of the article, and final approval.
Declaration
The authors declare no conflict of interest.
Funding
The preparation of this manuscript was not supported by any funding or grants.
Ethics Approval
Ethics approval was received from the ethics committee of Guangdong Provincial People’s Hospital (KY2023-827-03).
References
Salari N, et al. (2022) Global prevalence of cleft palate, cleft lip and cleft palate and lip: A comprehensive systematic review and meta-analysis.J Stomatol Oral Maxillofac Surg 123: 110-120. [crossref]
Aframian DJ, RV Lalla, DE Peterson (2007) Management of dental patients taking common hemostasis-altering medications. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103: S45 e1-11. [crossref]
van Aalst JA, KK Kolappa, M Sadove. (2008) MOC-PSSM CME article: Nonsyndromic cleft palate. Plast Reconstr Surg 2008. 121: 1-14. [crossref]
Oliver JD, et al. (2021) Innovative Molecular and Cellular Therapeutics in Cleft Palate Tissue Engineering.Tissue Eng Part B Rev 27: 215-237. [crossref]
Lewis CW, et al. (2017) The Primary Care Pediatrician and the Care of Children With Cleft Lip and/or Cleft Palate. Pediatrics 139: 5. [crossref]
Candotto V, et al. (2019) Current concepts on cleft lip and palate etiology. J Biol Regul Homeost Agents 33: 145-151 [crossref]
Lindeborg MM, et al. (2020) Optimizing speech outcomes for cleft palate. Curr Opin Otolaryngol Head Neck Surg,28: 206-211. [crossref]
Ruscello DM,LD Vallino. (2020) The Use of Nonspeech Oral Motor Exercises in the Treatment of Children With Cleft Palate: A Re-Examination of Available Evidence.Am J Speech Lang Pathol 29: 1811-1820 [crossref].
Frederick R, et al. (2022) An Ideal Multidisciplinary Cleft Lip and Cleft Palate Care Team.Oral Dis 28: 1412-1417. [crossref]
LaRossa D. (2000) The state of the art in cleft palate surgery. Cleft Palate Craniofac J 37: 225-8. [crossref]
Pigott RW, et al. (2002) A comparison of three methods of repairing the hard palate.Cleft Palate Craniofac J 39: 383-91. [crossref]
Elander A, et al. (2017) Isolated cleft palate requires different surgical protocols depending on cleft type.J Plast Surg Hand Surg 51: 228-234. [crossref]
Mommaerts MY, KK Gundlach, A Tache. (2019) “Flip-over flap” in two-stage cleft palate repair. J Craniomaxillofac Surg 47: 143-148. [crossref]
Liu H, et al. (2021) A new congenital cleft palate New Zealand rabbit model for surgical research.Sci Rep 11: 3865.
Bykowski MR, et al. (2015) The Rate of Oronasal Fistula Following Primary Cleft Palate Surgery: A Meta-Analysis.Cleft Palate Craniofac J 52: e81-7. [crossref]
Rossell-Perry P. (2022) Regarding a Personal Strategy for Cleft Palate Repair.J Craniofac Surg 33: 725-726. [crossref]
Lane H, S Harding,Y Wren. (2022) A systematic review of early speech interventions for children with cleft palate. Int J Lang Commun Disord 57: 226-245. [crossref]
The risk of endometrial hyperplasia (EH) increases during adjuvant therapy of breast cancer (BC) with tamoxifen. Currently, the problem of endometrial hyperplasia and endometrial cancer due to long-term use of tamoxifen is relevant, since the incidence of endometrial pathology has a direct correlation with the duration of use of tamoxifen. In order to improve early detection of endometrial cancer and avoid unnecessary invasive procedures, surveillance by a gynecologist should be tailored to the risk of endometrial cancer in women who have had breast cancer.
We developed a prognostic model to determine the likelihood of developing a composite endpoint (polyp, endometrial hyperplasia, abnormal uterine bleeding) depending on anamnestic and genetic risk factors. A comprehensive association analysis using mathematical modeling allowed us to build a predictive model of the risk of developing such adverse events as endometrial hyperplasia, endometrial polyp and abnormal uterine bleeding. This prognostic model has demonstrated high diagnostic efficiency, which allows its implementation in the clinical practice of gynecologists.
Breast cancer (breast cancer) is hormone-dependent in 60-70% of cases. Due to the fact that estrogens enhance cell proliferation of hormone-dependent breast tumors, endocrine therapy with tamoxifen (TAM) or aromatase inhibitors (IA) is an important stage in the treatment of such patients [1,2]. According to the literature, taking tamoxifen for 5 years reduces the risk of breast cancer recurrence by 39% [3]. The use of tamoxifen may be limited due to the adverse drug reactions (ADR). It is known that the adjuvant breast cancer therapy with tamoxifen increases the risk of endometrial hyperplasia (EH) because tamoxifen acts as an antagonist of estrogen receptors on breast tissue and as an agonist on the endometrium [4]. According to Neven P. and Vernaeve H. 50% of women who received long-term TAM treatment experienced any adverse effects on the endometrium [5]. Currently, the problem of hyperplastic processes and endometrial cancer is especially relevant during long-term tamoxifen administration, since the frequency of endometrial pathology has a direct correlation with the duration of TAM administration [6]. The supervision of a gynecologist should be adapted to the risk of endometrial cancer in women who have undergone breast cancer in order to improve the early detection of endometrial cancer and avoid unnecessary invasive procedures.
The Purpose of the Study
To determine the prognosis of tamoxifen ADR including endometrial hyperplastic processes, endometrial polyps and abnormal uterine bleeding, based on mathematical modeling in conjunction with the carrier of polymorphic variants of genes of cytochrome P450 enzyme and drug transporter proteins.
Hypothesis
Women with breast cancer taking endocrinotherapy have predictors of the development of local gynecological symptoms that require additional attention from an obstetrician-gynecologist. These predictors are not only clinical factors, but also genetic determinants responsible for the metabolism and transport of tamoxifen.
Materials and Methods
A prospective clinical and epidemiological and simultaneous pharmacogenetic study involved 120 patients with luminal breast cancer of stage I-III who were on adjuvant TAM therapy. Anamnestic, clinical, laboratory and instrumental data obtained from a survey of patients and extracts from medical records (results of the last hospitalization) were analyzed. The collection of biological material for genetic research (double buccal scraping) was carried out simultaneously in the Clinic named after Professor Y.N. Kasatkin in 2018-2019 years in Moscow. Informed voluntary consent was signed by all participants of the study before taking the genetic material. Polymorphic variants of the CYP2D6, CYP2C, and CYP3A genes were studied: CYP2D6*4, CYP3A5*3, CYP2C9*2, CYP2C9*3, CYP2C19*2, CYP2C19*3, as well as the polymorphic marker of the ABCB1 gene (C3435T) encoding the P-glycoprotein. Polymorphic gene variants were determined by the polymerase chain reaction method in real time at the Russian Medical Academy of Continuing Professional Education (RMACPE) of the Ministry of Health of the Russian Federation. The study was approved by the Ethics Committee of the RMACPE of the Ministry of Health of the Russian Federation (Protocol No. 1 dated 17.01.2017) and was conducted in accordance with the legislation of the Russian Federation and international regulatory documents. The program SPSS Statistics 26.0 (USA) was used for statistical processing of the results. The normality of the distribution was checked by the Kolmogorov–Smirnov method with the Lilliefors correction. The intergroup differences were assessed using the Student’s t-test and the Mann-Whitney U–test. Comparative analysis was used using either Pearson’s χ2 or Fisher’s exact test. To form mathematical predictive models, the method of constructing a logistic function using binary logistic regression with step-by-step selection of factors and, if necessary, additional construction of ROC curves followed by ROC analysis was used.
Results and Discussion
Tamoxifen’s ADR structure contains both systemic and local ADR, and systemic ones dominate over local ones with the highest representation of tides as vasa-active symptoms from the autonomic nervous system (67.3%). Local gynecological symptoms are represented by endometrial hyperplasia (GE), abnormal uterine bleeding (AMC) and endometrial polyp (PE) are much less common (20.2%; 12.5% and 12.5%, respectively), but in total they amount to 45.2%, which, taking into account a low subjective assessment (frequent asymptomatic course, absence of complaints), requires close attention from obstetricians and gynecologists. The high percentage of local gynecological symptoms we obtained turned out to be close to the data of Neven P and Vernaeve H., indicating 50% of any adverse effects on the endometrium in women taking TAM [5]. Taking into account the high total frequency of occurrence of local gynecological symptoms (%EH+%AUB+%PE=45.2%) and the presence of reliable associative links between local and systemic ADR, as well as genetic and non-genetic parameters obtained earlier [7-9], we developed a prognostic model to determine the development of a combined endpoint (polyp, endometrial hyperplasia, abnormal uterine bleeding). The resulting model included 9 predictors, taking into account the determination coefficient of the Neidlekerk, included 40% of the factors determining the development of the combined endpoint, and was reliable (p<0.001). The observed dependence is described by the equation:
where p is the probability of developing a combined endpoint (polyp, endometrial hyperplasia, AUB) (in fractions of one); XWeight loss – Weight loss during TAM therapy, kg; XMenopause – menopause (0 – no, 1 – yes) ; XAge– age, years ; XAsthenia – asthenia (0 – no, 1- yes); Xnumber of births – number of births; Xnumber of pregnancies – number of pregnancies; XABCB1 3435_TT – TT genotype of polymorphic variant ABCB1 3435 (0 – no, 1 – yes); XCYP2D6_4_GG– GG genotype of polymorphic variant CYP2D6*4 (0 – no, 1 – yes); XCYP3A5_GG– GG genotype of polymorphic variant CYP3A5 (0 – no, 1 – yes).
Based on the values of the regression coefficients, factors such as weight loss, the presence of asthenia, an increase in the number of births, the presence of the TT genotype of the polymorphic variant ABCB1 3435, the presence of the genotype GG of the polymorphic variant CYP2D6*4, GG of the polymorphic variant CYP3A5 have a direct relationship with the probability of developing a combined endpoint. While the presence of menopause, an increase in the number of pregnancies in the anamnesis and an increase in age reduce the likelihood of developing a combined endpoint. Table 1 shows the parameters of the relationship of each of the predictors of the model, including both clinical and anamnestic data and genetic factors responsible for metabolism and transport of TAM, with the chances of developing a combined endpoint of local gynecological symptoms.
Table 1: Evaluation of the relationship between the predictors of the model and the chances of developing a combined endpoint of local gynecological symptoms.
Predictor
COR (95% Cl)
p
AOR(95% Cl)
p
Weight loss
2.4 (0.93-6.13)
0.07
2.94 (0.98-8.8)
0.054
Menopause
0.55 (0.23-1.3)
0.160
0.5 (0.14-1.8)
0.302
Age
0.96 (0.9-1.01)
0.113
0.97 (0.89-1.05)
0.393
Asthenia
3.2 (1.3-7.3)
0.009*
3.78 (1.3-11)
0.014*
Number of births
1.8 (1.02-3.1)
0.041*
2.94 (1.13-7.66)
0.027*
Number of pregnancies
0.97 (0.76-1.2)
0.804
0.689 (0.42-1.12)
0.132
ТТ ABCB1 3435
2.77 (1.16-6.6)
0.021*
1.85 (0.64-5.3)
0.255
GGCYP2D6*4
2.6 (1.07-6.4)
0.035*
5 (1.6-15.6)
0.006*
GGCYP3A5
1.15 (0.49-2.7)
0.746
1.9 (0.66-5.59)
0.227
*The association with the predictor is statistically significant.
To confirm the results obtained, the most optimal value of the predictive function P was additionally determined using ROC analysis and a ROC curve was constructed (Figure 1).
Figure 1 is a ROC curve characterizing the dependence of the forecast of the combined endpoint on the value of the logistic function P. The area under the ROC curve was 0.827±0.043 (95% CI: 0.743-0.911). The value of the logistic function P at the cut-off point was 0.273. Patients with P values equal to 0.273 or higher were predicted to have a high risk of developing EH, endometrial polyp and AUB, and with P <0.273, a low risk. The sensitivity of the model at the selected cut-off point value was 82.4% (28 correct predictions out of 34 cases of combined endpoint), specificity was 72.9% (51 correct predictions out of 70 cases of absence of combined endpoint development). The overall diagnostic efficiency is 76%. According to the results, independent predictors of the development of the combined endpoint are the presence of asthenia, the number of births, the presence of the genotype GG polymorphic variant CYP2D6*4, the genotype TT polymorphic variant ABCB1 3435 and GG polymorphic variant CYP3A5.
Figure 1: A ROC curve characterizing the dependence of the forecast of the combined endpoint on the value of the logistic function P.
Conclusion
The conducted complex associative analysis allowed us, using mathematical modeling, to construct a prognostic model of the risk of developing combined local gynecological symptoms, such as endometrial hyperplasia, endometrial polyp and AUB. These local gynecological symptoms are a natural manifestation of the pharmacodynamic effects of tamoxifen, as an agonist of estrogen receptors on the endometrium in women with breast cancer. The result obtained determines the need for increased alertness of obstetricians and gynecologists regarding endometrial hyperplastic processes in women with breast cancer undergoing tamoxifen endocrinotherapy and, accordingly, the development of measures for their prevention. In addition, this predictive model has demonstrated high diagnostic effectiveness, which allows it to be implemented in the clinical practice of an obstetrician-gynecologist, including through medical decision support programs.
References
Huang B, Warner M, Gustafsson JA (2015) Estrogen receptors in breast carcinogenesis and endocrine therapy. Mol Cell Endocrinol. [crossref]
Rugo HS, Rumble RB, Macrae E, et al. (2016) Endocrine therapy for hormone receptor-positive metastatic breast cancer: American society of clinical oncology guideline. J Clin Oncol. [crossref]
Early Breast Cancer Trialists’ Collaborative G (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. The Lancet. [crossref]
Chernukha GE, Dumanovskaia MR (2013) Sovremennyie predstavleniia o giperplazii endometriia. Akusherstvo i ginekologiia.
Neven P, Vernaeve H (2000) Guidelines for monitoring patients taking tamoxifen treatment. Drug Saf. [crossref]
Chekalova MA, Shabanov MA, Zakharova TI, Kolpakova MN (2010) Significance of ultrasound morphological comparisons in the complex ultrasound diagnosis of the cervix uteri. Tumors of Female Reproductive System.
Golubenko EO, Savelyeva MI, Sozaeva Zh A, Korennaya V V, Poddubnaya IV, Valiev T T, Kondratenko S N, Ilyin M V (2023) Predictive modeling of adverse drug reactions to tamoxifen therapy for breast cancer on base of pharmacogenomic testing. Drug Metab Personalized Ther. [crossref]
Savelyeva MI, Golubenko EO, Sozaeva ZA, et al. (2022) Analysis of the complications of endocrine therapy with tamoxifen in breast cancer: clinical and pharmacogenetic aspects. Prospective pharmacogenetic cohort study. Journal of Modern Oncology.
Golubenko EO, Savel’yeva MI, Sozayeva ZHA, et al. (2022) Klinicheskoe znacheniie geneticheskogo polimorfizma fermentov metabolizma i transporterov tamoksifena pri rake molochnoi zhelezy: rezul’taty populiatsionnogo kogortnogo issledovaniia. Farmateka.
The endotoxin challenge serves as a valuable experimental model for antipyretic drug development, providing insights into systemic inflammatory responses and the efficacy of novel treatments. By inducing predictable physiological reactions, it mirrors the inflammatory profile of sepsis, allowing for investigations into the pathophysiology of fever and inflammation, as well as the evaluation of antipyretic therapies. This review examines the varied applications of endotoxin administration, particularly intravenous bolus dosing, and highlights the potential of combined bolus-infusion paradigms to sustain systemic responses and better align with therapeutic pharmacokinetics and pharmacodynamics. Furthermore, mathematical modeling and simulation techniques offer innovative approaches to optimizing experimental designs and data analysis. Despite its broad application, there remains a need for models that elicit a safe, sustained, and measurable systemic response, allowing for the thorough evaluation of antipyretics. Developing such models is crucial to enhancing the efficiency of drug development and improving clinical management of pyrexia across various settings.
Keywords
Endotoxin challenge, Antipyretic drug development, Systemic inflammation, Experimental medicine models, Pharmacokinetic – pharmacodynamic optimization
Introduction
The endotoxin challenge is an experimental medicine tool that has been used for over a century across a number of investigational efforts and in some settings even as a therapeutic. Kamisoglu et al. have shown that the plasma metabolomic profile following an endotoxin challenge is concordant with that from sepsis survivors, affirming the validity of the endotoxin challenge as a viable model to recapitulate homeostatic responses to inflammatory and pyrogenic challenges [1]. Uses of the endotoxin challenge in clinical investigation include attempts to characterize pathophysiology of pyrexia and inflammatory and anti-inflammatory pathways, describe time-course of clinical and molecular events as well as assessment of the degree of benefit of novel anti-pyretic and anti-inflammatory therapies. The doses and routes of endotoxin administration vary depending on the scientific question at hand. In turn, there are some challenges to design of an endotoxin challenge tailored to address specific questions, particularly in the context of definition of quantitative estimates of therapeutic benefit.
The innate risk of administering endotoxin especially to healthy volunteers is partly balanced by the somewhat predictable nature and time-course of the systemic response it elicits [2]. To further deliver on the twin need to ensure safe use of endotoxin for investigational purposes as well as to guide drug development, the NIH and FDA jointly oversaw an effort to develop a “national biological reference standard to be made available to pharmaceutical manufacturers and qualified biomedical investigators as an aid to standardization of bioassays and research with endotoxin”. This standard developed using endotoxin from Escherichia coli O: 113: H10: K negative has also been adopted by the WHO as its reference for endotoxin assays [2].
Pyrexia or fever is defined as a state in which the central thermoregulatory set point is increased, primarily via disinhibition of thermogenesis, and pyrogens are agents that induce pyrexia [3,4]. In general, exogenous pyrogens such as bacterial and viral antigens or exotoxins activate the Toll-like receptor (TLR) pathway, that triggers a signal transduction cascade leading to increased generation of endogenous pyrogens such as prostaglandins, culminating in the pathophysiologic events that constitute the pyrexia response [3,5]. The purported teleologic role of pyrexia in the setting of disease, particularly infectious disease, is an adaptive response to inhibit microorganism proliferation and amplify endogenous immunological response [6]. However, this is accompanied by increases in metabolic demand as well as undue stress on the cardiovascular, respiratory and other systems that are less than welcome [6]. Timely and prudent use of antipyretics tailored to rein in the unwarranted systemic effects of pyrexia without impacting its benefits as an adaptive response relies heavily on clinical judgment [6]. However, there is limited standardization to guide the use of antipyretics, particularly so from a contextual perspective [6]. It is also important to note that antipyretics themselves may carry side-effects and there is a paucity of data and limited interest in developing newer antipyretics [6]. Given that fever is one of the commonest clinical symptoms and signs, there is an urgent need to develop newer antipyretics with optimized time-action and benefit-risk profiles to enable fit-for-purpose use based on the setting in which fever occurs.
The sterile inflammatory state induced by an endotoxin challenge makes it especially valuable to characterize pyrexia and evaluate antipyretics. Although endotoxin may be administered by various routes, in the context of pyrexia, given the need to elicit a measurable systemic response, intravenous (IV) administration remains the preferred route. Systemic responses have been reported in settings of high and low dose administration. Following an IV endotoxin (E. coli O: 113) bolus in the range of 2 to 4 ng/kg body weight in healthy volunteers, Suffredini et al. and others reported a monophasic febrile response with onset 1 to 2 hours after administration, peaking at 3 to 4 hours to reach a maximal rise in body temperature over baseline with spontaneous resolution of the febrile response between 8 and 12 hours after the bolus administration [2,7]. In a placebo-controlled study, Pernerstorfer et al. were able to successfully demonstrate superiority of the antipyretic effects of acetaminophen over aspirin using a 4ng/ kg IV endotoxin bolus challenge [8]. Dose-limiting toxicities at doses greater than 4ng/kg have generally precluded their routine use. The brisk and robust febrile response following IV endotoxin at the 2-4ng/ kg dose is preceded by flu-like symptoms (chills, rigors, malaise, nausea and headache) starting one hour after administration and resolving spontaneously within 3 to 5 hours [2]. Other systemic changes accompanying the febrile response include a drop in blood pressure and increases in heart and respiratory rates with alterations in various blood- based measures including leukocytosis, cytokines and hormones [7]. It is important to note that while the rapid-onset responses are a direct effect of endotoxin, some of the other observed responses are a result of triggering of the inflammatory and cytokine cascade rather than a direct effect of the endotoxin itself, whose half-life when administered as an IV bolus is short lived. The IV bolus endotoxin challenge therefore allows for insights into the inflammatory event cascade and its mediators and at the same time also sheds light on whether a novel therapeutic has antipyretic or anti-inflammatory benefits. However, its ability to inform on the magnitude and duration of such benefit is particularly dependent on the synchrony between the temporal profile of action of the investigational agent and that of the responses to the endotoxin challenge. This is especially true for a novel antipyretic.
An alternate option would be administration of endotoxin as a continuous IV infusion to attempt to synchronize temporal profiles across the endotoxin challenge and investigational agent. However, the pharmacokinetics of a continuous infusion may limit the ability to achieve a peak challenge that is sufficiently robust to trigger a measurable systemic response. And indeed, Andreason et al. [9] have reported that lower doses of endotoxin in the range of 0.06-0.08 ng/kg, achieved via IV bolus or continuous IV infusion elicit what appears to be a submaximal inflammatory response with no detectable changes in vital signs including body temperature.
There is a need for development of a reliable yet feasible endotoxin challenge model that enables elicitation of a peak systemic response that is sustained over several hours, while not exceeding the total amount of endotoxin that can be safely administered and in a paradigm that is flexible enough to investigate a range of PK-PD profiles across agents and escalating doses. This need is particularly urgent in the context of novel antipyretics where onset and offset of effects and synchrony with the febrile response are critical parameters of success. One potential option would be a combined bolus-infusion approach, where a bolus administration of endotoxin is followed by a continuous infusion such that the total dose of endotoxin does not lead to dose-limiting toxicities. Van Lier et al. have proposed that a continuous infusion of endotoxin may better reflect the prolonged systemic responses including fever observed in the setting of infection and inflammation in man [10]. In a model of endotoxin challenge with a bolus dose of 1mg/kg followed by an infusion at 0.5ng/kg/hour for 3 hours, Jansen et al. were able to successfully demonstrate the beneficial anti-inflammatory effects of Cytosorb hemoperfusion in a group of healthy volunteers [11]. In a study with endotoxin challenges on two separate occasions, using a paradigm that combined a bolus administration of endotoxin at 1ng/kg followed by an infusion at 1ng/ kg/hour for 3 hours in a group of healthy volunteers, Leijte et al. were able to show endotoxin tolerance and reversal, confirming that the total dose administered in such a paradigm is safe and that the model is able to successfully detect treatment differences [12]. In a head-to- head comparison of a bolus only paradigm (2ng/kg) versus a combined bolus-infusion paradigm (1ng/kg bolus followed by a 3-hour infusion at 1ng/kg/hr) in the context of experimental endotoxemia, Kiers et al. found that subjects attained comparable peak levels and exhibited more prolonged and sustained duration of symptoms including fever during the endotoxin challenge model of a bolus followed by a continuous infusion vs bolus only method [13]. Kiers et al. also found that subjects attained higher peak cytokine levels that were sustained for longer durations following the combined bolus-infusion paradigm vs the bolus only paradigm [13]. Hence it is possible that a carefully developed combined bolus-infusion paradigm may permit administration of higher total amounts of endotoxin that could lead to a temperature response with slower onset but more sustained duration. Yet another novel approach would be to use modeling and simulation tools either as standalone approaches or in combination with in vivo efforts to optimize experimental paradigms and data analyses strategies. Using mathematical modeling of data collated across multiple endotoxin challenge experiments and investigator groups, Windoloski et al. showed that a continuous infusion elicits a stronger response that lasts longer than a bolus only paradigm, while potentially allowing for delivery of maximal total doses of endotoxin that can be safely administered [14]. Liu et al. have used mathematical modeling to describe and predict the dynamics of responses to endotoxin challenges with intent to inform on novel clinical trial design, particularly in the context of drug development [15].
Taken together, a combined bolus-infusion paradigm coupled with a mathematical modeling and simulation strategy may be the optimal solution to provide an experimental model of endotoxin challenge that is safe but provides a measurable response while allowing for synchronization with the PK-PD properties of a novel therapeutic. Although there is evidence that speaks to each component of the above approach, data to confirm validity of the approach and develop an integrated strategy are currently lacking. Therefore, there is an urgent need for targeted experimentation to address the above gaps and provide a consolidated strategy that integrates human in vivo experimentation and modeling and simulation tools that delivers on a fit-fit-for-purpose endotoxin challenge design.
References
Kamisoglu K, Haimovich B, Calvano SE, Coyle SM, Corbett SA, et (2015) Human metabolic response to systemic inflammation: Assessment of the concordance between experimental endotoxemia and clinical cases of sepsis/SIRS. Critical Care 19. [crossref]
Suffredini AF, Noveck RJ (2014) Human endotoxin administration as an experimental model in drug ClinicalPharmacology&Therapeutics 96: 418-422. [crossref]
Bartfai T, Conti B (2010) The Scientific World JOURNAL 10: 490-503.
Ogoina D (2011) Fever, fever patterns and diseases called ‘fever’ – A Journalof Infection and Public Health 4: 108-124. [crossref]
Blatteis CM, Sehic E, Li S (2000) Pyrogen sensing and signaling: Old Views and new Clinical Infectious Diseases 31. [crossref]
Mehmood KT, Al-Baldawi S, Zúñiga Salazar G, Zúñiga D, Balasubramanian S (2024) Antipyretic use in noncritically ill patients with fever: A Cureus.
Godin PJ, Fleisher LA, Eidsath A, Vandivier RW, Preas HL, et (1996) Experimental human endotoxemia increases cardiac regularity. Critical Care Medicine 24: 1117- 1124. [crossref]
Pernerstorfer T, Schmid R, Bieglmayer C, Eichler H, Kapiotis S, et al. (1999) Acetaminophen has greater antipyretic efficacy than aspirin in endotoxemia: A randomized, double-blind, placebo-controlled trial. Clinical Pharmacology & Therapeutics 66: 51-57. [crossref]
Andreasen A, Krabbe K, Krogh-Madsen R, Taudorf S, Pedersen B, et al. (2008) Human Endotoxemia as a model of systemic inflammation. Current Medicinal Chemistry 15: 1697-1705. [crossref]
van Lier D, Geven C, Leijte GP, Pickkers P (2019) Experimental human Endotoxemia as a model of systemic inflammation. Biochimie 159: 99-106. [crossref]
Jansen A, Waalders NJ, van Lier DP, Kox M, Pickkers P (2023) CytoSorb hemoperfusion markedly attenuates circulating cytokine concentrations during systemic inflammation in humans in vivo. Critical Care 27.
Leijte GP, Kiers D, van der Heijden W, Jansen A, Gerretsen J, et (2019) Treatment with acetylsalicylic acid reverses endotoxin tolerance in humans in vivo: A randomized placebo-controlled study. Crit Care Med 47: 508-516. [crossref]
Kiers D, Leijte GP, Gerretsen J, Zwaag J, Kox M, et (2019) Comparison of different lots of endotoxin and evaluation of in vivo potency over time in the experimental human ENDOTOXEMIA model. Innate Immunity 25: 34-45. [crossref]
Windoloski KA, Janum S, Berg RM, Olufsen MS (2024) Characterization of differences in immune responses during bolus and continuous infusion endotoxin challenges using mathematical modelling. Experimental Physiology 109: 689-710. [crossref]
Liu F, Aulin LB, Guo T, Krekels EH, Moerland M, et al. (2022) Modelling inflammatory biomarker dynamics in a human lipopolysaccharide (LPS) challenge study using delay differential equations. British Journal of Clinical Pharmacology 88: 5420-5427. [crossref]
The biofloc system uses the presence of microorganisms in the culture system to generate flocs from nitrogen waste, thus permitting continued water use. Factors like carbon source, carbon-to-nitrogen ratio, and stocking density affect the quality and density of microorganisms and the productivity of the system. This study aims to determine the growth, feed conversion ratio (FCR), and condition indices of catfish reared in a biofloc system using rice bran (RBB), fermented rice bran (FRB), and hydrolyzed fermented rice bran (HFRB) as carbon sources. Fingerling catfish with an initial mean weight of 11.15 ± 1.60 g were stocked in outdoor 200-liter plastic tanks in a randomized design with the three treatments in two replications. A biomass (g) to volume (l) ratio of 1:2 was maintained throughout the experiment. The carbon-nitrogen content was adjusted to 5:1 C-N in the system. The results showed that the water quality parameters of all the treatments were within the range recommended for aquaculture. The HFRB treatment showed significantly higher floc (P<0.05) compared with RBB and FRB. The weight of the catfish at the end of the 8-week rearing trials showed the catfish culture using RBB (80.26 ± 3.20 g), FRB (81.70 ± 2.5 g), and HFRB (85.50 ± 2.55 g) were significantly different (P<0.05). A similar trend was observed in the feed conversion ratio. The condition indices of catfish were also higher in FRB treatment. The FCR value and protein efficiency ratio were not significantly different (P>0.05) between RBB and HFRB treatments. However, the percentage survival was significantly lower in the HFRB treatment (P < 0.05) compared with the FRB and RBB treatments. While fermentation of rice bran has gained much consideration, this study demonstrated that acid-hydrolyzed fermentation of rice bran could boost its performance as a biofloc carbon source.
The African catfish, Clarias gariepinus, is valued as the most economically important fish cultured in Africa. This species is reputed for its desired aquaculture traits, including high fecundity, fast growth, hardiness, and market attractiveness. It is one of the most researched culturable fish in Nigeria. Modern culture techniques such as aquaponics and biofloc systems have also adopted catfish as one of the experimental species for the viability of the systems. Biofloc aquculture systems transform fish waste into microorganism biomass through the addition of carbon sources. The type of carbon source significantly influenced the water quality of the system. The floc serves as additional food for the fish, leading to faster growth and higher production of fish compared to traditional methods. Microorganism- enriched floc confers immunological enhancement to fish, thereby improving fish health. Many ingredients, such as grains, sucrose, sugarcane byproducts, tapioca, rice, wheat bran, etc., have been used as carbon supplements in biofloc systems. Ligno-cellulose materials like bran showed limited success in biofloc systems due to the to the slow release of carbon, but tends to have higher microbial diversity and immune-boosting potential for cultured organisms. Researcher efforts to improve carbon release and utilization of lignified and cellulose materials in biofloc systems remain pertinent. This work compared the growth performance and condition indices of catfish in biofloc systems where untreated, fermented, and hydrolyzed fermented rice bran were used as carbon sources. In ethanol production, acid hydrolysis of rice bran resulted in the conversion of its starch and cellulose component into reducing sugar, and fermentation has been used to increase the nutrient value of rice bran. While fermented rice bran has been well experimented with in biofloc, we hypothesize that acid hydrolyzed once could also serve in the system [1-12].
Materials and Methods
Experimental Setup
The experiment was conducted at the biological garden, Umaru Musa Yar’adua University. Fingerlings of African catfish, Clarias gariepinus, of 11.15 ± 1.50 g initial weight were obtained from hatchery-reared stock and kept in a 200-liter plastic tank for a 7-day acclimation period. The fish were fed a diet containing 40% crude protein at 5% body weight during 8:00–18.00 hours daily. Experimental tanks were seeded with 1 liter of water from a pre-fertilized earthen fish pond containing abundant phytoplankton. The fish were randomly distributed to the three experimental treatments of untreated, fermented, and hydrolyzed fermented rice bran biofloc in a triplicate of 20 fish per tank at a 2:1 biomass (g) to volume (l) ratio. Each experimental setup was seeded with 2 liters of water from a pre-fertilized earthen fish pond containing abundant phytoplankton.
Fermentation and Acid Hydrolysis of Rice Bran
Milled rice bran was sieved through a 0.50 mm sieve and sterilized in an autoclave. The solid-phase fermentation procedure described by [13] was followed with slight modifications. 50 g of rice bran was added to 45 ml of distilled water, while 5 g of baker’s yeast dissolved in 5 ml of water was added to make up a 1:1 weight-to-volume ratio of rice bran to water. The mixture was incubated in a beaker at a temperature of 27°C for 24 hours. Acid hydrolysis of rice bran was carried out using 50 ml of 2% sulfuric acid mixed with 50 g of rice bran, and the mixture was incubated at 90°C for 3.5 h. This was modified from. The hydrolyzed product was subjected to fermentation as described before. The fermented and hydrolyzed fermented products were oven dried at 45°C for 6 h, powdered, and sieved through 100 µm mesh. The fermented rice bran (FRB) and hydrolyzed fermented rice bran (HFRB) were used as carbon sources in biofloc production catfish [11].
Water Quality and Floc Monitoring
Water parameters were measured every two weeks. The temperature (°C) was determined using a mercury in glass thermometer, while the pH was measured using a Metrohm Herisau E520 pH meter. Dissolved oxygen concentration was determined through the Winkler-Azide method [14]. Chemical oxygen demand (COD) was determined titrimetrically, while biological oxygen demand (BOD) was determined using the incubation method at 20°C for five days [15]. The total ammonia nitrogen concentration was determined using the phenate method [16], while nitrate was determined using spectrophotometry [14]. By assuming 16% of protein is nitrogen and 46% carbon in rice bran, the amount of carbon to be added was calculated following. The total feed consumed per day was estimated, and the C:N was adjusted daily to 15:1 by adding treatments C of untreated, fermented, or hydrolyzed rice bran. The treatment carbon was mixed with 1 liter of water from the treatment before being added to the experimental setup. Biofloc volume (ml/L) was measured every 14 days for each experimental treatment using an Imhoff cone. The floc solution was allowed to settle down for one hour before the reading was taken [17-19].
Data Collection
The total length (TL) of fish in centimeters from each replicate was measured from the tip of the snout to the end of the caudal fin using a meter rule. Body weight was measured using an electronic digital balance. At the end of the experiment, all fish in the tank were counted, and the survival rate was determined. Growth performance in each treatment was estimated by weighing 10 randomly selected fish from each treatment and replicates on a biweekly basis, and the following growth and condition indices parameters were estimated:
Hepatosomatic index (HIS) = (Liver weight, g)/(Whole body weight, g) ×100
Viscerosomatic index (VSI) = (Viscera weight, g)/ (Whole body weight, g) ×100
Statistical Analysis
Results were presented as mean ± SD. A one-way ANOVA was used to analyze the data, and the means werecompared using Duncan’s multiple range test. All the analyses were performed using SPSS 21.
Results
Water Quality Parameters
The average temperature recorded in this experiment did not differ significantly among all treatments (Table 1). A significant lower (p < 0.05) dissolved oxygen (DO) level was observed in FRB (5.95 ± 0.40 mg/L) compared to RBB (6.55 ± 0.50 mg/L) and HFRB (6.15 ± 0.10 mg/L). The highest DO and COD levels were recorded in the RBB treatment (Table 1). The average values for biological oxygen demand (BOD), total dissolved solids (TDS), and pH were highest in RBB treatment, while TDS and BOD had the highest average values in FRB treatment. HFRB treatment recorded the highest average value for nitrite. A significantly lower value of pH (6.75) was recorded in HFRB treatment (p < 0.05).
Table 1: Physicochemical parameters of water in a catfish biofloc system where rice bran, fermented rice bran, and hydrolyzed fermented rice bran (HFRB) were used as carbon sources.
Carbon sources
Parameters
Ricebran(RBB)
Fermentedricebran (FRB)
Hydrolyzedfermentedricebran (HFRB)
Significantlevel
Temp °C
27.80 ± 0.30a
27.50 ± 0.50a
27.60 ± 0.40a
P > 0.05
pH
7.70 ± 0.10a
7.20 ± 0.35b
6.75 ± 0.50c
P < 0.05
TDS (mg/l)
195.00 ± 10.00a
243.00 ± 15.50b
205.00 ± 18.50c
P < 0.05
COD (mg/l)
102.50 ± 5.50a
115.20 ± 8.70b
98.00 ± 5.50b
P < 0.05
BOD (mg/l)
55.50 ± 6.50a
60.45 ± 10.50a
41.50 ± 8.00b
P < 0.05
DO (mg/l)
6.55 ± 0.5a
5.95 ± 0.4ab
6.15 ± 0.10b
P < 0.05
TAN (mg/l)
3.85 ± 0.55a
2.52 ± .0.45b
2.60 ± 0.50b
P < 0.05
Nitrite (mg/l)
0.35± 0.10a
0.30± 0.10b
0.33 ± 0.10c
P < 0.05
Means with a different superscript in the same row are significantly different (P < 0.05).
Floc Production
The biofloc volume was significantly higher in HFRB starting from week 2 of the experiment compared to all other treatments (Figure 1). The floc volume reached maximum in week 7 with values of 135.1 ml/l, 166.6 ml/l, and 111.0 ml/l for HFRB, FRB, and RBB treatments, respectively.
Figure 1: Floc production in the catfish biofloc system where rice bran, fermented rice bran, and hydrolyzed fermented rice bran were used as carbon sources.
Growth Parameters and Feed Efficiency
The growth rates, survival, and feed utilization of catfish in the biofloc system for the 8 weeks of rearing (Table 2) showed that treatment of rice bran through solid phase fermentation and acid hydrolysis enhanced its utilization as carbon sources in biofloc as the final weight and specific growth rates were higher compared with untreated rice bran. The highest final weight (85.5 g) was recorded in HFRB treatment, while the lowest value of weight gain (80.26) was in RBB. The feed conversion ratio was also highest in HFRB treatment. The survival was however lowest in HFRB, and this was significant (P < 0.05). The growth of catfish in biofloc utilizing hydrolyzed fermented rice bran as a carbon source in this experiment was better than that in untreated bran, as the growth rates were higher. The best FCR obtained for catfish (1.52 ± 0.05) was recorded in HFRB treatment, and this was significantly higher (P < 0.05). The percentage survival was significantly lower in HFRB treatment (P < 0.05).
Table 2: Growth parameters of catfish reared in a biofloc system where rice bran, fermented rice bran, and hydrolyzed fermented rice bran were used as carbon sources.
Parameters
Rice bran(RBB)
Fermentedricebran (FRB)
Hydrolyzedricebran (HFRB)
Initial weight (g)
11.15 ± 1.60a
11.15 ± 1.60a
11.55 ± 1.60a
Final weight (g)
80.26 ± 3.20a
81.70 ± 2.50b
85.50 ± 2.55b
Absolute growth (g)
70.15 ± 2.80a
70.65 ± 1.80c
74.53 ± 1.50b
Absolute growth rates(g/day)
0.992 ± 0.03a
1.000 ± 0.03c
1.031 ± 0.02b
Relative growth (%)
8.643 ± 0.21a
8.695 ± 0.11a
8.964 ± 0.10b
Specific growth rate(%/day)
1.211 ± 0.16a
1.23 ± 0.14a
1.28 ± 0.13b
Survival%
92 ± 1.55a
95 ± 1.50a
86 ± 1.52b
Feed conversion ratio
1.65 ± 0.04a
1.68 ± 0.03a
1.52 ± 0.05b
Protein efficiency ratio
0.403 ± 0.03a
0.405 ± 0.04a
0.421 ± 0.05b
Means (n=10) followed by different letters in each rows are significantly different (P < 0.05).
Condition Indices
Condition factor (Fulton factor) calculated showed that catfish in the FRB treatment had higher values (0.54) followed by those in RBB (0.47) and HFRB (0.44) treatment fishes (Figure 2). Similar trends were observed with hepatosomatic index and viscerosomatic index in this experiment. The HIS showed a significantly higher value of 5.9% in the FRB treatment (P < 0.05).
Figure 2: HIS (hepatosomatic index), CF (condition factor), VSI (viscerosomatic index) African catfish, C. gariepinus fingerlings reared in a biofloc system where rice bran, fermented rice bran, and hydrolyzed fermented rice bran were used as carbon sources.
Discussion
This experiment demonstrated that differential treatment of rice bran influenced its performance as a carbon source in biofloc production of catfish. Even though fermented bran has been well researched in this system, our findings suggest that acid-hydrolyzed fermented rice bran also has potential for consideration as well. Acid hydrolysis of rice bran resulted in the conversion of its starch and cellulose components into reducing sugar [11]. This may improve its performance in carbon release in the biofloc system. Slow carbon release by rice bran has been attributed to its low performance as a biofloc carbon source [5,21]. Rice bran is a cheap carbon source; efforts towards boosting its carbon release have been the focus of research. All the water quality parameters recorded in the system were within the range recommended for aquaculture and catfish production. Temperature is an important ecological factor with a profound effect on fitness, growth, and metabolism performance in aquatic organisms [22-24]. Variations in the temperature in our research were not significant, indicating no external influence on the treatment used. DO is an important abiotic factor influencing the growth and survival of fish. A significant reduction in the level of dissolved oxygen (DO) observed in FRB compared to the rest of the treatment could be due to higher microorganisms in this system, as reported in previous findings [25-27]. The pH range of 7-8.5 was said to be suitable for biofloc system performance, while recommends an average pH of 6.7, as biofloc systems tend to lose their buffering capacity at lower pH. The stability of the bioflocs was found to be dictated by the pH. All the treatments used in the current research maintained the pH of catfish biofloc within the recommended range [28-31], even though the pH level in the HFRB treatment was significantly lower (P < 0.05). Recovery of the acid after the hydrolysis process is a major bottleneck, and this informed our modified method for reducing acid utilization in the hydrolysis process. Future research towards optimizing acid hydrolysis of bran for biofloc carbon usage may be important. The survival rates of RBB and FRB treatments were significantly higher (P < 0.05) than HFRB treatments. This may be connected to lower pH in HFRB treatment. In this study, a higher concentration of total ammonium nitrate was recorded in HFRB treatment even though not significant (P > 0.05). This is in line with the findings of [27,32], who reported the use of complex carbon such as bran to decrease ammonia concentration in biofloc when compared to other carbon sources with simple sugar. The growth parameters of the catfish in the biofloc system after 8 weeks of rearing in this experiment showed that treatment of rice bran through solid phase fermentation and fermentation after acid hydrolysis enhanced its utilization as carbon sources in biofloc as the final weight and specific growth rates were higher compared with untreated rice bran. Organosomatic indices of catfish in this research showed a direct link between the effects of change in carbon source and environment on the fish; the response in such indices in response to nutrition has been well reported [33,34]. The use of acid-hydrolyzed fermented bran in this research proved efficacious in the system, as the growth parameters of this fish therefrom were well above the untreated rice bran treatment. The floc level was also higher in the hydrolyzed fermented bran treatment in this research. The observed drawback in this use of hydrolyzed bran is the low pH produced in the biofloc system. This might account for the reduced survival rates of the fish in this system. In conclusion, the results of this study suggest that hydrolyzed fermented rice bran can be used in catfish biofloc systems as a carbon source without negative consequences on water quality, growth, and feed utilization. However, adjusting the pH may be required for better performance and is recommended. Further research is needed to investigate the optimal hydrolization condition of bran for their usage as carbon sources in biofloc systems.
Acknowledgements
We would like to thank, Umaru Musa Yar’Adua University for their technical assistance. This work was supported by the Tertiary Education Trust Fund, Nigeria.
References
Okomoda VT, Koh ICC, Shahreza SM (2018) A simple technique for accurate estimation of fertilization rate with specific application to Clarias gariepinus (Burchell 1822). Aquaculture Research 49(2).
Tesfahun A (2018) Feeding biology of the African catfish Clarias gariepinus (Burchell) in some of Ethiopian lakes: a International Journal of Fauna and Biological Studies 5(1) 19-23.
Babatunde TA, Ibrahim K, Abdulkarim B, Wagini NH (2019) Co-production and biomass yield of amaranthus (Amaranthus hybridus) and tilapia (Oreochromis niloticus) in gravel-based substrate filter aquaponics. International Journal of Recycling of Organic Waste in Agriculture V(8): 1-7.
Chauhan RS, Mishra A (2022) New innovative technologies for sustainable aqua In Biodiversity 97-111 CRC Press.
Dauda AB, Romano N, Ebrahimi M, Karim M, Natrah I, et al. (2017) Different carbon sources affects biofloc volume water quality and the survival and physiology of African catfish Clarias gariepinus fingerlings reared in an intensive biofloc technology system. Fisheries Science 83(6).
Minabi K, Sourinejad I, Alizadeh M, Ghatrami ER, Khanjani MH (2020) Effects of different carbon to nitrogen ratios in the biofloc system on water quality growth and body composition of common carp Cyprinus carpio L fingerlings. Aquaculture International 28(5).
Hargreaves JA (2013) Biofloc production systems for aquaculture 4503 1-11 Stoneville MS USA: Southern Regional Aquaculture Center.
Bakhshi F, Najdegerami EH, Manaffar R, Tukmechi A, Farah KR (2018) Use of different carbon sources for the biofloc system during the grow-out culture of common carp Cyprinus carpio L fingerlings. Aquaculture 484: 259-267.
Sasikumar R, Saranya S, Lincy LL, Sathyan A, Chellapandi P (2024) Fermented rice extract as a carbon source for biomass production of aquaculture Biomass Conversion and Biorefinery 1-9.
Arreola LR, Quiroz-Guzmán E, Caballero JL, García EIP, Murueta JHC, et (2023) Shrimp Hepatopancreatic Crude Enzymes as Aids in Rice Bran Hydrolysis: Potential Contributors to Sustainable Aquaculture Turkish Journal of Fisheries and Aquatic Sciences 23(9).
Sutanto S, Go AW, Chen KH, Nguyen PLT, Ismadji S, et (2017) Release of sugar by acid hydrolysis from rice bran for single cell oil production and subsequent in-situ transesterification for biodiesel preparation. Fuel Processing Technology 16: 7281-291.
Christ-Ribeiro A, Chiattoni LM, Mafaldo CRF, Badiale-Furlong E, de Souza-Soares LA (2021) Fermented rice-bran by Saccharomyces cerevisiae: Nutritious ingredient in the formulation of gluten-free cookies. Food Bioscience V(40).
Chinma C, Ilowefah M, Muhammad K (2013) Optimization of Rice Bran Fermentation Conditions Enhanced by Baker’s Yeast for Extraction of Protein Nigerian Food Journal 321: 126-132.
APHA (1998) Standard Methods for the Examination of Water and Wastewater (20th Ed) American Public Health Association American Water Works Association Water Environmental Federation Washington DC.
APHA (2012) Standard methods for the examination of water and waste water 19th edition American Public Health Association Inc New York 1193.
APHA (1985) Standard methods for the examination of water and wastewater, 15th American Public Health Association (APHA), New York.
Choi HJ (2020) Agricultural biowaste rice bran as carbon source to enhance biomass and lipid production: analysis with various growth rate models. Water Science and Technology 82(6).
Avnimelech Y (1999) Carbon/nitrogen ratio as a control element in aquaculture Aquaculture 176: 227–235.
Saeedi KH, Chapara M (2024) Isolation, Identification, and Biofloc Production: Potential of Floc-Forming Bacteria Using a Novel Monoculture Approach and Aquaculture Studies 24(4).
Fulton T (1902) Rate of Growth of Sea Fish 20th Annual Report of the Fishery Board for Scotland London.
Mahadik PU, Wasave SS, Chavan BR, Meshram SJ, Ghode GS, et (2024) Effect of fermented rice bran as a carbon source for rearing genetically improved farmed Tilapia Oreochromisniloticus Linnaeus 1758 fry in biofloc system. Aquaculture V(592).
Pekkoh J, Chaichana C, Thurakit T, Phinyo K, Lomakool S, et al. (2022) Dual- bioaugmentation strategy to enhance the formation of algal-bacteria symbiosis biofloc in aquaculture wastewater supplemented with agricultural wastes as an alternative nutrient sources and biomass support materials. Bioresource Technology V (359).
Abakari G, Luo G, Kombat EO, Alhassan EH (2021) Supplemental carbon sources applied in biofloc technology aquaculture systems: Types effects and future Reviews in Aquaculture 13: 1193-1222.
Green BS, Fisher R (2004) Temperature influences swimming speed growth and larval duration in coral reef fish Journal of Experimental Marine Biology and Ecology 299(1).
Taylor JC, Miller JM (2001) Physiological performance of juvenile southern flounder Paralichthys lethostigma Jordan and Gilbert 1884 in chronic and episodic hypoxia. Journal of Experimental Marine Biology and Ecology 25(82).
Adineh H, Naderi M, Jafaryan H, Khademi Hamidi M, Yousefi M, et (2022) Effect of stocking density and dietary protein level in biofloc system on the growth digestive and antioxidant enzyme activities health and resistance to acute crowding stress in juvenile common carp (Cyprinus carpio). Aquaculture Nutrition 1-12.
Ajamhasani E, Akrami R, Najdegerami EH, Chitsaz H, Shamloofar M (2023) Different carbon sources and probiotics in biofloc based common carp (Cyprinus carpio) culture: Effects on water quality growth performance fish welfare and liver Journal of the World Aquaculture Society 54(6).
Pérez-Rostro CI, Pérez-Fuentes JA, Hernández-Vergara MP (2014) Biofloc a technical alternative for culturing Malaysian prawn Macrobrachium rosenbergii. Sustainable Aquaculture Techniques 87-104.
Azim ME, Little DC (2008) The biofloc technology (BFT) in indoor tanks: water quality biofloc composition and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture 283: 29-35.
De Schryver P, Crab R, Defoirdt T, Boon N, Verstraete W (2008) The basics of bio- flocs technology: the added value for aquaculture. Aquaculture 277(3-4).
Yustiati A, Ayuningtyas AP, Andriani Y (2023) The Effectiveness of the Red Water System RWS Technique in African Catfish Culture Clarias gariepinus: A review. Asian Journal of Fisheries and Aquatic Research 23(3).
Abiri SA, Chitsaz H, Najdegerami EH, Akrami R, Jalali AS (2022) Influence of wheat and rice bran fermentation on water quality growth performance and health status of Common carp (Cyprinus carpio L) juveniles in a biofloc-based Aquaculture V(555).
Akani NP, Daka ER (2015) Evaluation of weight changes condition factor and organosomatic indices of Clarias gariepinus exposed to sub-lethal concentrations of an oilfield wastewater. Current Studies in Comparative Education Science and Technology 2(2).
Eroldoğan OT, Kumlu METİN, Aktaş M (2004) Optimum feeding rates for European sea bass Dicentrarchus labrax L reared in seawater and freshwater. Aquaculture 231(1-4).