Monthly Archives: July 2018

The Effect of Age on Spinal Range of Motion: A Review

DOI: 10.31038/ASMHS.2018231

Abstract

Reduced spinal mobility may result in activity limitations and participation restrictions, which could subsequently affect quality of life. This literature review examined the effects of aging on spinal range of motion (ROM). Two databases (PubMed and Google Scholar) were searched using the MeSH terms spine, aging, range of motion, athlete, human and collagen. Two hundred twenty-four articles were identified; 210 of these were rejected as not directly relevant with the current review. The accepted articles (n=14) were categorized into four participant groups (athletes, clinical, elderly, and general).  Each of the studies was analyzed and assigned a quality grade using the GRADE system provided by the American Dietetic Association. The results suggested that aging causes increased risk for spinal fractures and loss of ROM and bone density.  For women, spinal deformity and vertebral compression fractures may lead to impaired mobility and quality of life.  More research is needed on the effects of the aging spine in relation to overall health, quality of life and socio-economic status.

Keywords

aging, spinal, range of motion, human, athlete, collagen

Introduction

Musculoskeletal function is determined by range of motion (ROM), strength, endurance, coordination, and sensation 1]. The majority of these physiological parameters (e.g. aerobic power, strength, endurance, coordination, and sensation) peak in late adolescence and then gradually decline with age 2]. Within the musculoskeletal system, part of the aging effect is the increase in intramuscular connective tissue stiffness which results in decreased ROM and a gradual performance decline in Activities of Daily Living (ADL) 3].

Range of Motion in Different Populations

The changes that occur with aging, such as loss of lumbar flexion, extension and lateral flexion, may be responsible for decreases in spinal ROM 3,4]. The motion profile of physically active or athletic populations is more difficult to evaluate than the profile of less active populations because age-associated differences in the degree of muscle damage after exercise in well-trained humans have yet to be clearly demonstrated in the literature 5].

Yukawa et al reported mean spinal flexion of 53.0° and hyperextension of 23.4° with no difference between the genders 6]. Another study reported females decreasing extension and flexion ROM slightly more than males between the ages of 20–70 years (13.9° and 9.0° vs 16.3° and 8.0°) [4]. Age-related reductions in lumbar flexion, extension and lateral flexion were most evident after approximately 40 years of age.

The role of collagen

It is important to understand the role of collagen and how age-related changes to collagen matrices are linked to the declining mechanical properties of aging bone and joints [4,7]. Physical and biochemical changes occur to collagen with increasing age, resulting in decreased extensibility. These changes include an increased formation of intramolecular and intermolecular cross-links that restricts the ability of the collagen fibres to move past each other as tissue length changes [3]. Cross-linking involves two different mechanisms, one a precise and enzymatically controlled cross-linking during development and maturation and the other an adventitious non-enzymatic mechanism following maturation of the tissue.  This non-enzymatic cross-linking, known as glycation, is the major cause of dysfunction of the collagenous tissues in old age.

The process of cross-linking and the presence of advanced glycation end products (AGEs) seem to be major determinants in the loss of ROM and strength [8]. AGEs naturally form inside the body when proteins or fats combine with sugars (glycation). This non-enzymatic reaction affects the normal function of cells, making them more susceptible to damage and premature aging. The effect of glycation on cell-matrix interactions may be an equally important aspect of aging collagen. It is interesting to note that this process is accelerated in diabetic individuals due to higher blood glucose levels [9]. Although there are 19 genetically distinct human collagens, the functions of the more minor collagens have yet to be clarified. Types I and II collagen are found in intervertebral discs.  Aging causes this type of collagen to transition into a more fibrotic tissue.

This increased fibrosis, which is associated with degeneration, contributes to changes in material properties of the nucleus pulposus from a fluid-like to a solid-like material, thus contributing to a more brittle, fragile disc [10].  Fragility of aging bone may be related to changes in collagen as evidence suggests that altered collagen molecules have a detrimental effect on the mechanical properties of bone. When bone collagen is damaged due to non-enzymatic cross linking, also known as glycation, the bone exhibits increased stiffness, ROM, decreased bone strength and reduced stability [6].

Aging and hyaline cartilage

The aging process similarly affects muscles, hyaline cartilage and joint motion.  Muscle fibers atrophy and cartilage dehydrates, causing a loss in elasticity and joint motion restriction that leads to flexibility decrease and loss of ROM. The articular surfaces of the human spine’s facet joints are covered by hyaline cartilage that serves as an elastic load-bearing material responsible for the frictionless movement of the surfaces of articulating joints. As the structure of hyaline cartilage changes, there is an increased risk of joint inflammation and arthritis [11]. The decrease in tensile strength after the third decade of life, along with inflammation from repeated injury, overuse in sport, and congenital defects may lead to increased risk of osteoporosis [10,12].

Aging and loss of bone mass

The aging spine is characterized by two parallel but independent processes: development of degenerative discogenic changes and bone mass reduction. osteoporosis, or reduced bone mineral density, increases the risk of stress fractures [13]. In focusing on the relationship between these two processes, the American College of Sports Medicine underlines the need for further research on osteoporosis [14]. One study evaluated factors related to spinal mobility in patients with postmenopausal osteoporosis [15]. The researchers found that skeletal fractures are an important clinical manifestation of the disease, with older female patients the most severely affected. Multiple vertebral fractures can result in postural deformities, which could cause significant functional impairments in ADLs [15,16] and have a significant impact on quality of life.

Joint Hypermobility

Another important consideration connected to bone health is joint hypermobility, which is defined as excessive range of motion with a global, whole-body score of 4 or higher on the 9-point Beighton scale [17,18]. When considering spinal ROM and aging, available motion in the lumbar spine drops by approximately 30% between youth and age 70 [2,19]. According to Day et al. [20], available hypermobility data in general populations are conflicting; they state that some findings report reduced bone mineral density in hypermobile participants, while others report increases. A study on hypermobile 34-year old women not only found significantly lower bone mineral density measurements, but some of the participants had already reached osteoporotic levels [20].

Characteristics of the aging spine

Important characteristics of the aging spine include a decrease in collagen and proteoglycan content of the annulus fibrosus and nucleus pulposus [21], damage to collagen from cross-linking [22] and atrophy of type II muscle fibres.  This damage results in a decrease in elasticity and joint motion restriction that leads to a decrease in flexibility and loss of ROM [11]. In addition, increased intramuscular connective tissue stiffness can result in decreased ROM [3]. Long-term complications associated with aging affect spinal health and can cause significant functional impairments in activities of daily living [15,16]. Since spinal health and mobility are key determinants of whole body function, an increase in participation restrictions may result in a perceived quality of life change that is usually detrimental [23].

To our knowledge, no systematic review exists that examines the relationship between aging and spinal ROM. Therefore, the aim of this review was to investigate the role of aging and its effects on spinal range of motion, with a deliberate focus on athletic, elderly, clinical and general populations.

Methods

Two databases were searched (PubMed and Google Scholar) between July and September 2013 and again in September 2017, using the following Medical Subject Heading (MeSH) terms:  spine, aging, athlete, range of motion, human, collagen.  Research studies were rejected if they did not meet the one of following criteria: English language, human participant, observational study, longitudinal study and case study. The initial search produced 224 articles of which 21 were immediately removed for being animal studies.  A further 132 were removed for being unrelated to the MeSH terms and 11 articles were removed because they were not applicable or did not meet the quality requirements of the ADA (American Dietetic Association) Evidence Manual. The remaining 60 studies were rated on a scale of 1 to 3, with 3 being the lowest quality (Limited), 2 being studies with minor methodological concerns (Fair) and 1 being the highest quality with strong design and free from bias (Good). Studies not meeting these criteria were excluded. An additional 46 articles were eliminated as they either did not pertain to the question being addressed, or were inconclusive in their findings (Table 1). Of the 14 retained papers, 6 were review articles and were manually checked to identify any missed studies that may have related to the subject; none were found. The accepted articles were categorized into the following populations: athletes, clinical, general and elderly.  The athlete group consisted of all studies mentioning the word athlete, sports or exercise. The clinical group included clinical trials or research and the elderly group included studies mentioning the term elderly or aging populations.  The general group consisted of all other studies which did not fall into the athlete, clinical, or elderly categories (Figure 1).

Results

Athlete population

Although the athlete category yielded four papers specifically mentioning athletes, exercise, sport, competition and sports injuries, useful information was gleaned from only one paper relating to ROM or exercise in relation t.o biomechanical function and aging. The review by Benjamin et al. [24] discussed the structure-function correlations of entheses on both the hard and soft tissues with attention paid to mechanical factors that influence form and function.   It explored the relationship between entheses and exercise, and emphasized the degenerative, rather than inflammatory nature of most enthesopathies (pathological changes at an enthesis) in sport. This study is relevant because, as stated by the authors, the tendon-ligament complex response to loading allows for multi-axis bending, such as in the lumbar spine.  It applies to diseases associated with the spondyloarthritides (SpA) including ankylotic spondylitis, psoriatic arthritis, reactive arthritis and undifferentiated SpA, all of which may have deleterious effects on ROM [24]. The removed papers addressed bone formation and fracture healing, evaluation of changes in T1rho and T2 relaxation time in the meniscus using 3.0 T MRI in asymptomatic knees of marathon runners, tissue engineered strategies for skeletal muscle injury and post-meniscectomy qualitative risk analysis considering high BMI and pre-existing osteoarthritis.

ASMHS2018-104-Janine Bryant UK_F1

Figure 1. Prisma and exclusion flow chart here.

Table 1. Categories table

Article

Participants

Method

Quality Grade

Significance

Conclusion

8

A

R

II

Focus on degenerative

Role of enthesopathies in ROM changes

27

G

MR

II

Poor cellular nutrition

Tissue degeneration leads to osteoarthritis

40

E

O

II

Focus on aging spinal disorders

Link spinal disorders to ROM loss

16

E

R

II

Focus on structural changes due to age

Further study is crucial for understanding the unique biomechanical function of the aging spine

23

E

R

II

Age-associated conditions

Implications on elderly limited mobility and Quality of Life

43

E

OBS

I

Compares healthy and ageing degenerated discs

Connects endplate damage to Degenerative Disk Disease

13

E

OBS

I

Aging disc and collagen changes

Both collagen and proteoglycans undergo age-related changes

33

E

R

II

Age is a primary risk for dev. Of OA

More data is needed to understand age-related changes that lead to Osteoarthritis

49

C

R

II

Collagen changes and joint function relating to OA

Aging impacts reparative abilities that can lead to Osteoarthritis and loss of ROM

42

C

OBS

I

Links muscle atrophy with low back pain

Pilates improves ROM in trunk and pelvic segments

Key: A: Athletes G: General E: Elderly C: Clinical

Methodology: R: Review MR: Mini-review O: Overview OBS: Observational

Clinical population

In the clinical category, osteoarthritis (OA) was discussed in one of the three retained papers.  In their review, authors Sinkov and Cymet [25] discuss imbalance of joint function as an initiator of the disease process worsened through changes in the collagen in the joint. The authors describe OA as a non-inflammatory disease characterized by progressive loss of joint articular cartilage resulting in pain and deformity and most present in populations over the age of 65, an element that can significantly affect quality of life (QoL). Some risk factors for primary OA include increasing age or history of injury to the joint from trauma, repetitive stress or inflammation.

The prevailing explanation for the onset of OA is a progressive fatigue failure, or prolonged wear and tear [12,15,25,26]. This explains the increase in incidence of OA with age, as well as its prevalence in joints that are overloaded or overused, such as the ankle in ballet dancers [10], or the elbow in baseball pitchers [25].

The second paper in this category discusses lumbopelvic flexibility and stability as affected by Pilates training utilizing forty healthy male and female volunteers with a mean age of 31.65 ± 6.21 yrs [27]. The study was retained not because it utilized Pilates as a therapeutic measure, but because it examined asymptomatic individuals exhibiting an inability to control lumbo-pelvic stability; this may be an early detection sign for spinal problems [27]. This study indicated that Pilates could be used as an adjunctive exercise program to improve flexibility, enhance control-mobility of the trunk and pelvic segments and, more relatedly, may also prevent and attenuate the predisposition to axial musculoskeletal injury.

The third study [8] examines the effect of strenuous exercise on the turnover rate of collagen and included a discussion on the molecular mechanisms involved in the aging of collagen, increase in stiffness and the process of enzymatic and non-enzymatic collagen cross-links.  The authors reported age-related changes in bone, tendon, articular cartilage and the matrix protein glycation leading to formation of intermolecular cross-linking, thereby affecting optimal mechanical functioning of tissue. This process clearly has relevance to aging and exercise because the slow turnover of aging collagen results in an accumulation of advanced glycation end-products. This also can be described as an oxidation rendering the collagen fibres too stiff for optimal functioning. This publication is somewhat limited in that its findings showed that, although strenuous sports training regimes increase tensile strength of bone and tendon, further understanding of the mechanisms of collagen turnover and cross-linking are needed to improve understanding of the problems caused by exercise and injury recovery [8]. The paper was ultimately retained in our study for its focus on glycation and the aging of connective tissue via the process of collagen cross-linking.

General population

The first of two studies retained in this category, identified as mini-review, addresses transport properties of cartilaginous tissues in relation to their cellular nutrition as it applies to articular cartilage. Poor cellular nutrition in cartilaginous tissues is believed to be a primary source of tissue degeneration that results in OA or disc degeneration [4]. Transport properties include:

Solute diffusivities that are significant because, due to the avascular nature of cartilaginous tissue, diffusion of solutes through the tissue extracellular matrix plays an integral role in cellular nutrition;

Hydraulic permeability as an important property of cartilage because water is the major component of the tissue and is an important factor governing the rate of fluid transport; and,

Effect of mechanical loading of tissue that significantly affects the transport of fluids and solutes through the tissue, but is dependent on the type of loading (i.e., dynamic vs. static loading).

Intolo et al. [10] focused in their review on the effect of age on lumbar ROM.  They stated that, although lumbar ROM reduces with advancing age, it is still unclear how this reduction occurs across different age categories. Furthermore, they stressed the importance of determining if movement reduces with age and whether it does so consistently across different age strata.  There were several limitations in this study including that some relevant published studies were not identified due to either alternative keywords or poorly worded abstracts.  However, the paper was retained herein for its potential value to clinicians by providing normative data on the expected loss of lumbar ROM in healthy aging individuals. The article demonstrated age-related reductions in lumbar flexion, extension and lateral flexion, losses in flexibility that are most evident after approximately 40 years of age.

Elderly population

Eight papers were found on the aging process of the spine or musculoskeletal system.  The first was an overview discussing aging on intervertebral discs (IVDs), endplates, facet joints, muscles and ligaments, and the vertebral body. Papadakis et al. [28] linked a number of painful disorders to aging of the spine, including loss of bone mass, disc degeneration, facet degeneration, disc bulging, facet hypertrophy and ligamentum flavum hypertrophy. These may contribute to compromised biomechanics and ROM loss.

The second paper [29], reported an overview of the mechanisms of aging in the spine that cause structural changes and injury risk affecting biomechanics and ROM. However, the review did not address other mechanisms of degeneration beyond advancing age, stating that further study is required to understand the mechanisms of degeneration and the unique biomechanical function of the aging spine.

The third paper retained from the elderly category focused on aging in the musculoskeletal system [30]. The paper focused mainly on age-associated conditions involving the bones, muscles and peripheral joints; the research was broader in that it included musculoskeletal disorders and a range of interactive conditions such as fibromyalgia and tendinopathy that affect soft tissues, tendons and ligaments, bones and osteoporosis, IVD, and muscular conditions like polymyalgia and myopathies. Implications of musculoskeletal disorders on the public health of elderly persons from the perspectives of physical and social impacts caused by pain was presented, including limited mobility and reduced QOL [30].

An observational study was found [22] which aimed to investigate the presence, localization and abundance of cells expressing notochordal cell markers in human lumbar discs during degeneration. Postembryonic vestiges of the notochord were found in the nucleus pulposus of human IVDs. This research suggests a correlation between cells with an immuno-histochemical notochordal phenotype that do not exhibit typical morphology of notochordal cells and early degenerative changes, particularly granular matrix changes. The researchers studied two groups of specimens, the first being lumbar motion segments that were removed from 30 deceased individuals between 26 weeks of fetal gestation and 86 years of age.

None in this group had a known history of back problems or pain. The second group was comprised of 38 disc samples that had been obtained during surgery for painful lumbar disc degeneration and/or disc herniation (protrusion, extrusion, or sequestration). The samples were obtained from individuals (23 males, 15 females; age range 26–69 years) with known clinical symptoms, radiological features, and histological degree of disc degeneration.

The loss of cells with typical notochordal phenotype (physaliferous) and the coincident onset with signs of disc degeneration leads to speculations about their role in the preservation of disc function. Although interspecies comparison—premature loss of notochordal cells from chondrodystrophic breeds with higher incidence of intervertebral disc degeneration—gave some support for this idea. This study, was promising as the first study analyzing the presence of cells with notochordal phenotype and age-related changes of adult human discs. However, the authors state that conclusive evidence for this hypothesis is still missing and, therefore, this paper was ultimately removed.

According to Rajasekaran et al. [31], chronic overuse of the immature spine is related to endplate damage leading to degenerative disk disease (DDD). This study was observational in nature, focused on DDD and discussed decreased nutrition as the final common pathway for DDD and endplate (EP) damage. EP damage affects diffusion and, therefore, disc nutrition. The authors found that damage to the endplate may be the initiating factor for disc degeneration by both altering the mechanical environment and affecting the nutritional pathways. This study is also the first in literature to document the feasibility of pharmacological modulation of endplate vascularity and disc diffusion, but is purely a radiological assessment of degeneration, thus, the clinical symptoms have not been considered. Another limitation of the research is that disc degeneration, being an ongoing phenomenon, requires a serial longitudinal and in-vivo study, which, as stated by the authors, was not performed. It would have been useful to have histologically supportive data to explain the changes in the endplate and nucleus pulposus.

Research by Singh et al. [32] discussed age-related changes in the human intervertebral disc. The aim of this study was to characterize age-related changes in the matrix of human intervertebral discs from the third to eighth decade of life with a focus on collagen and proteoglycan composition.  It utilized background data of disc degeneration as associated with changes in the concentration and fragmentation of matrix molecules. Forty-six discs of human thoracolumbar spines (T11-L5) aged 32 through 80 years were analyzed. However, the authors did not include the youngest age group (31–40-years old) in their analysis because it is difficult to obtain IVD specimens in this age group due to the relatively low rate of mortality. DNA, collagen and proteoglycan contents were measured using chemical assays while small non-aggregating proteoglycan levels were analyzed by comparative Western blotting.  The paper concludes that large proteoglycans play a major role in water retention, while small proteoglycans regulate formation of the extracellular matrix. During aging, proteoglycan and collagen levels decrease, while some small proteoglycans show differing patterns of changes in both the inner and outer nucleus pulposus and annulus fibrosus. The concentration of biglycan increases in all three disc compartments with age, while decorin content declines. The decrease in total collagen and proteoglycan content may increase susceptibility in IVD degeneration. The authors concluded that the functional significance of these changes needs further investigation.

The seventh study found in this category was a review that discussed age related changes in the musculoskeletal system and the development of osteoarthritis [12]. Although this paper duplicated much of what was collected from other studies in this category, this is the first paper to mention Vitamin D deficiency as a risk factor for OA (possibly contributing to oxidative stress symptoms).  In addition, this study links formation of advanced glycation end products (AGEs) to the modification of collagen resulting in increased cross-linking of collagen molecules. Formation of excessive collagen cross-links affects the biomechanical properties of cartilage resulting in increased stiffness, more brittle cartilage,and increased susceptibility of the tissue to fatigue failure.

The eighth and final study [33] aimed to establishing radiographic standard values for cervical spine morphometry, alignment, and ROM, and included 1,230 asymptomatic male and female subjects between ages 30 and 80.  Subjects underwent anteroposterior (AP), lateral, flexion and extension radiography of the cervical spine. AP diameters of the spinal canal, vertebral body and disc were measured at each level from the 2nd to the 7th cervical vertebra (C2-C7), with sagittal alignment and ROM during flexion and extension calculated using a computer digitizer. Findings included the AP diameter of the spinal canal and disc height decreased gradually with increasing age as well as extension ROM decreasing more than the flexion ROM, and lordotic alignment progressing with increasing age. In addition, the study found there was a significant difference in C2-C7 alignment and ROM between males and females, with cervical lordosis and thoracic kyphosis increasing more with age in females than in males.  Although the study had several limitations, including possible measurement errors, difficulty in achieving uniform positions of the vertebrae in relation to the X-ray beams in different positions of motion and measurement being performed only once due to the large sample size, it was ultimately retained in our review as it establishes standard values and age-related changes in cervical anatomy, alignment and ROM (Table 1).

Discussion

Reduced spinal mobility may result in activity limitations and participation restrictions, which could subsequently affect quality of life. This literature review examined the effects of aging on spinal range of motion (ROM). This research relates to current available research and offers a deeper inquiry into spinal ageing specifically.  When investigating how the spine ages, there were several significant subcategories found in the literature.  Among those specific to aging, were aging and articular cartilage, aging and flexibility/ROM, aging of specific spinal regions (cervical, thoracic, lumbar), special considerations of the aging athlete, aging and osteoarthritis, aging and muscle strength, bone and aging, and the role of collagen in aging and ROM.  In considering ROM and aging, entheses were discussed as common sites of overuse, exploring the relationship between entheses, enthesopathies and exercise drawing attention to degeneration rather than inflammation as histological evidence of the most common enthesopathies rarely demonstrates evidence of inflammation within the affected entheses.  In this respect, spinal ROM is affected because the tendon-ligament response to loading allows for multi-axis bending, such as in the lumbar spine [26]. With regards to specific pathologies related to ROM and aging, osteoarthritis, being non-inflammatory, causes joint pain and damage which is progressively degenerative, the clinical presentation being deep localized pain with stiffness, especially in OA of the spine, which also can result in pain and weakness.

Findings, especially in the elderly population, focused on degenerative disorders of the aging spine including disc and facet degeneration, facet hypertrophy and loss of bone mass over time as contributors to compromised biomechanics and ROM loss [26]. Finally, in the general category, degeneration was again a theme with focus on poor cellular nutrition in cartilaginous tissues being the primary cause of tissue degeneration resulting in OA (in the case of articular cartilage degeneration) or disc degeneration especially of the intervertebral discs [34], both leading to back pain and loss of ROM.

The process of aging affects all of the body systems including the spine. The literature links loss of bone density and flexibility to increased risk for postural changes and disc fractures that contribute to loss of range of motion and participation in activities of daily living. Quality of life is affected as aging populations experience decreased mobility due to age-related changes in spinal health. Information found, especially relating to collagen, points to physical and biochemical changes to collagenous frameworks with increased age resulting in decreased extensibility especially in aging skeletal muscle. Collagenous structural changes, regardless of type, cause degenerative effects in the mechanical properties of bone, tendons, ligaments and cartilage.

Aging affects intervertebral disks, endplates, facet joints, muscles and ligaments. This can lead to degenerative conditions such as disc degeneration, loss of bone mass, facet degeneration, bulging discs, facet hypertrophy and ligamentum flavum hypertrophy. Athletic, clinical, general and elderly populations experience these changes in various ways depending on age, activity level, and genetic disposition, with the major commonality being compromised biomechanics and loss of range of motion. Aging bone in shows an increased risk for development of osteoporosis thereby increasing the risk for stress fractures, especially in older females.

The limitations to the present study was the lack of available research into the ageing human spine as related to different populations and ROM. Continued research into the process of spinal aging, and how it affects range of motion and quality of life, with particular focus on the spinal segments, surrounding muscles, vertebrae and discs, is warranted based on this review. Further research will enable an increasingly aging population worldwide to benefit from findings. The overall goal is to promote spinal health and identify preventive and therapeutic interventions that will increase or maintain spinal range of motion, thereby allowing individuals to continue participation in activities of daily living and to enjoy an overall increased quality of life.

References

  1. Chen AL, Mears SC, Hawkins RJ (2005) Orthopaedic care of the aging athlete. J Am AcadOrthopSurg 13: 407–416. [ Crossref]
  2. Miyakoshi N, Hongo M, Maekawa S, Ishikawa Y, Shimada Y, et al. (2005) Factors related to spinal mobility in patients with postmenopausal osteoporosis. Osteoporosis Int 16(12): 1871–1874.
  3. Wallmann HW (2009) Stretching and flexibility in the aging adult. Home Health Care Manag Pract 21(5): 355–357.
  4. Jackson A, Gu W (2009) TRANSPORT PROPERTIES OF CARTILAGINOUS TISSUES. CurrRheumatol Rev 5: 40.[ Crossref]
  5. Fell J, Williams D (2008) The effect of aging on skeletal-muscle recovery from exercise: possible implications for aging athletes. J Aging Phys Act 16: 97–115.[ Crossref]
  6. Yukawa Y, Kato F, Suda K, Yamagata M, Ueta T (2012) Age-related changes in osseous anatomy, alignment, and range of motion of the cervical spine. Part I: Radiographic data from over 1200 asymptomatic subjects. Spine J 21: 1492–1498.
  7. Zioupos P, Currey JD, Hamer AJ (1999) The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res 45: 108–116. [Crossref]
  8. Avery NC, Bailey AJ (2005) Enzymic and non-enzymic cross-linking mechanisms in relation to turnover of collagen: relevance to aging and exercise. Scand J Med Sci Sports 15: 231–240.[ Crossref]
  9. Bailey AJ, Paul RG, Knott L (1998) Mechanisms of maturation and ageing of collagen. Mech Ageing Dev 106: 1–56.[ Crossref]
  10. Intolo P, Milosavljevic S, Baxter DG, Carman AB, Pal P, et al. (2009) The effect of age on lumbar range of motion: a systematic review. Man Ther 14: 596–604.[ Crossref]
  11. Charlifue S, Post MW, Biering-Sørensen F, Catz A, Dijkers M, et al. (2012) International Spinal Cord Injury Quality of Life Basic Data Set. Spinal Cord 50: 672–675.[ Crossref]
  12. McCormack M, Briggs J, Hakim A, Grahame R (2004) Joint laxity and the benign joint hypermobility syndrome in student and professional ballet dancers. J Rheumatol 31: 173–178.
  13. Phrompaet S, Paungmali A, Pirunsan U, Sitilertpisan P (2011) Effects of Pilates training on lumbo-pelvic stability and flexibility. Asian J Sports Med 2: 16–22.
  14. Menard D, Stanish WD (1989) The aging athlete. Am J Sports Med 17: 187–196.[ Crossref]
  15. Nattrass CL, Nitschke JE, Disler PB, Chou MJ, Ooi KT (1999) Lumbar spine range of motion as a measure of physical and functional impairment: an investigation of validity. ClinRehabil 13: 211–218.[ Crossref]
  16. Wong KW, Leong JC, Chan MK, Luk KD, Lu WW (2004) The flexion-extension profile of lumbar spine in 100 healthy volunteers. Spine J 29: 1636–1641.
  17. Beighton PH, Grahame R, Bird HA (1989) Hypermobility of Joints, 2nd ed. Berlin/Heidelberg; Springer-Verlag.
  18. Meltzer KR, Cao TV, Schad JF, King H, Stoll ST, et al. (2010) In vitro modeling of repetitive motion injury and myofascial release. J Bodyw MovTher 14: 162–171. [Crossref]
  19. Fitzgerald GK, Wynveen KJ, Rheault W, Rothschild B (1983) Objective assessment with establishment of normal values for lumbar spinal range of motion. Phys Ther 63: 1776–1781.
  20. Day H, Koutedakis Y, Wyon MA (2011) Hypermobility and dance: A review. Int J Sports Med 32: 485–489.
  21. Borg-Stein J, Elson L, Brand E (2012) The aging spine in sports. Clin Sports Med 31: 473–486.[ Crossref]
  22. Troke M, Moore AP, Maillardet FJ, Hough A, Cheek E. A new, comprehensive normative database of lumbar spine ranges of motion. Clin Rehabil 15: 371–379.
  23. Cupon LN, Jahn WT (2003) Current standards for measuring spinal range of motion for impairment. J Chiropr Med 2: 8–12.[ Crossref]
  24. Benjamin M, Toumi H, Ralphs JR, Bydder G, Best TM, et al. (2006) Where tendons and ligaments meet bone: Attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J Anat 208: 471–490.
  25. Solomon R, Solomon J, Minton S (2005) Spinal Problems in Dancers. Wright JP, Blakely JE, Preventing dance injuries (2nd ed.), IL, Human Kinetics, 91–92. Spinal Proble 5: 91–92.
  26. Peterson JR (2011) Dance medicine: Head to toe: A dancer’s guide to health. Hightstown, NJ: Princeton Book Company.
  27. Alves de Araújo ME, Bezerra da Silva E, Bragade Mello D, Cader SA, Shiguemi Inoue Salgado A, Dantas EHM (2012) The effectiveness of the Pilates method: Reducing the degree of non-structural scoliosis, and improving flexibility and pain in female college students. J Bodyw Mov Ther 16: 191–198.
  28. Papadakis M, Sapkas G, Papadopoulos EC, Katonis P (2011) Pathophysiology and biomechanics of the aging spine. Open Orthop J 5: 335–342.[ Crossref]
  29. Ferguson SJ, Steffen T (2003) Biomechanics of the aging spine. Eur Spine J 12 Suppl 2: S97–97S103.[ Crossref]
  30. Wightman S (2005) Lumbosacral injuries in classical ballet dancers: A review of the literature. University of Tennessee at Chattanooga Physical Therapy 1–3.
  31. Rajasekaran S, Venkatadass K, Babu J, Ganesh K, Shetty AP (2008) Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs: Results from in-vivo serial post-contrast MRI studies in 365 human lumbar discs. Eur Spine J 17: 626–643.
  32. Singh K, Masuda K, Thonar E, An H, Cs-Szabo G (2009) Age-related changes in the extracellular matrix of nucleus pulposus and annulus fibrosus of human intervertebral disc. Spine J 34(1): 10–16.
  33. Yukawa Y, Kato F, Suda K, Yamagata M, Ueta T (2012) Age-related changes in osseous anatomy, alignment, and range of motion of the cervical spine. Part I: Radiographic data from over 1200 asymptomatic subjects. Spine J 21: 1492–1498.
  34. Bailey AJ (2001) Molecular mechanisms of ageing in connective tissues. Mech Ageing Dev 122: 735–755. [Crossref]
  35. Sinkov V, Cymet T (2003) Osteoarthritis: understanding the pathophysiology, genetics, and treatments. J Natl Med Assoc 95: 475–482. [Crossref]
  36. Kadel NJ, Teitz CC, Kronmal RA (1992) Stress fractures in ballet dancers. Am J Sports Med 20: 445–449. [Crossref]
  37. Held G (2002) Research into the aging process: A survey. N Am Actuar J 6(3): 30–37.
  38. Robinson ME, O’Connor P, Shirley FR, Mac Millan M (1993) Intrasubject reliability of spinal range of motion and velocity determined by video motion analysis. Phys Ther 73(9): 626–631.
  39. Amorim T, Sousa F, Dos Santos J (2011) Influence of Pilates training on muscular strength and flexibility in dancers. Motriz: J Phys Ed 17(4): 660–666.
  40. Apostolopoulos N: Microstretching. A new recovery regeneration technique. New Stud Athl 2004;19(4): 47–56.
  41. Busscher I, van Dieën JH, Kingma I, van der Veen AJ, Verkerke GJ, et al. (2009) Biomechanical characteristics of different regions of the human spine: an in vitro study on multilevel spinal segments. Spine (Phila Pa 1976) 34: 2858–2864. [Crossref]
  42. Castro JL, Medina-Carnicer R, Galisteo AM (2006) Design and evaluation of a new three-dimensional motion capture system based on video. Gait Posture 24: 126–129.
  43. Curran PF, Fiore RD, Crisco JJ (2008) A comparison of the pressure exerted on soft tissue by 2 myofascial rollers. J Sport Rehabil 17(4): 432.
  44. Frankel V, Nordin M (2012) Basic Biomechanics of the Musculoskeletal System, 4th ed. Baltimore: Lippincott Williams and Wilkins.
  45. Garrido-Castro JL, Medina-Carnicer R, Schiottis R, Galisteo AM, Collantes-Estevez E, et al. (2012) Assessment of spinal mobility in ankylosing spondylitis using a video-based motion capture system. Man Ther 17: 422–426.
  46. Gelabert R (1986) Dancers’ spinal syndromes. J Orthop Sports Phys Ther 7: 180–191. [Crossref]
  47. Greer N, Mosser G, Logan G, Halaas GW (2000) A practical approach to evidence grading. Jt Comm J QualImprov 26: 700–712. [Crossref]
  48. Hamerman D (1997) Aging and the musculoskeletal system. Ann Rheum Dis 56: 578–585. [Crossref]
  49. Hammer W (2000) Integrative fascial release and functional testing Australasian Chiropractic & Osteopathy. JCOCA 9: 13–16.
  50. Huber M, Trattnig S, Lintner F (2000) Anatomy, biochemistry, and physiology of articular cartilage. Invest Radiol 35: 573–580. [Crossref]
  51. Inoue N, Espinoza Orías AA (2011) Biomechanics of intervertebral disk degeneration. OrthopClin North Am 42: 487–499, vii. [Crossref]
  52. Kahn K, Warren M, Stiehl A, McKay H, Wark J (1999) Bone mineral density in active and retired ballet dancers. J Dance Med Sci 3: 15–23.
  53. Klemp P, Learmonth ID (1984) Hypermobility and injuries in a professional ballet company. Br J Sports Med 18: 143–148. [Crossref]
  54. Knight I (2008) An insider’s guide to hypermobility syndrome. J Sport Rehabil 17(4): 432–442.
  55. Kujala UM, Oksanen A, Taimela S, Salminen JJ (1997) Training does not increase maximal lumbar extension in healthy adolescents. ClinBiomech (Bristol, Avon) 12: 181–184. [Crossref]
  56. Loeser RF (2010) Age-related changes in the musculoskeletal system and the development of osteoarthritis. ClinGeriatr Med 26: 371–386. [Crossref]
  57. Nitschke JE, Nattrass CL, Disler PB, Chou MJ, Ooi KT (1999) Reliability of the american medical association guides’ model for measuring spinal range of motion: Its implication for whole-person impairment rating including commentary by Hazard R. Spine 24: 262–268.
  58. Roussel NA, Nijs J, Mottram S, Van Moorsel A, Truijen S, et al. (2009) Altered lumbopelvic movement control but not generalized joint hypermobility is associated with increased injury in dancers. A prospective study. Man Ther 14: 630–635.
  59. Russell P, Pearcy MJ, Unsworth A (1999) Measurement of the range and coupled movements observed in the lumbar spine. Br J Rheumatol 32: 490–497.
  60. Saíz-Llamosas JR, Fernández-Pérez AM., Fajardo-Rodríguez MF, Pilat A, Valenza-Demet G, et al. (2009) Changes in neck mobility and pressure pain threshold levels following a cervical myofascial induction technique in pain-free healthy subjects. J Manipulative Physiol Ther 32: 352–357.
  61. Shedden M, Kravitz L (2006) Pilates exercise: A research-based review. J Dance Med Sci 10: 111–116.
  62. Steinberg N, Hershkovitz I, Peleg S, Dar G, Masharawi Y, et al. (2006) Range of joint movement in female dancers and non-dancers aged 8 to 16 years. Am J Sports Med 34: 814–823.
  63. Stone J (2000) Myofascial release. Athl Ther Today 5(4): 34–35.
  64. Trepman E, Micheli L (1988) Overuse injury in sports. Sem Orthop 3: 217–222.
  65. Weiler C, Nerlich A, Schaaf R, Bachmeier BE, Wuertz K, et al. (2010) Immunohistochemical identification of notochordal markers in cells in the aging human lumbar intervertebral disc. Eur Spine J 19: 1761–1770.
  66. Wyon MA, Felton L, Galloway S (2009) A comparison of two stretching modalities on lower limb range of motion measurements in recreational dancers. J Strength Cond Res 23(7): 2144–2148.

Introductory Teaching Tool Utilizing Immunohistochemistry to Explain the Placenta

DOI: 10.31038/UGFM.2018111

“The womb may be more important than the home”
J.P. Barker

Abstract

Introduction: The placenta occupies an important place in science, medicine, and law; yet, it remains a difficult organ to explain and understand because of its unique characteristics.

Methods and Materials: A descriptive observational study was carried out on placentas. Placental components were illustrated with diagrams and corresponding microphotographs were highlighted by immunohistochemical staining to identify cell-types and structures.

Results: The placenta was diagrammatically demonstrated by dividing it into chorionic plate with umbilical cord, basal plate and placental disc. In highlighting the histological components, approximately 80 immunohistochemical preparations were taken into account

Conclusion: Placental complexity continues to be the critical interface for maternal-fetal dialogue.  Better educational methods are needed to explain the complex pathophysiology of this essential organ. Improving placental education is the key to attracting young researchers dedicated to this field.

Key words

Histology; immunohistochemistry; medical education; placenta; trophoblast.

Introduction

The placenta is a complex and misunderstood organ not only because it is exclusively vascular in nature and possesses allograft-like characteristics, but also because it ceases to function at week 40 of gestation. The placenta is temporary because it is unable to be efficient after reaching 40 weeks of gestation; it is no longer able to sustain the rapidly growing fetus. Its vascular features are unique because the placenta manages two individual circulatory systems belonging to two different people (mother and fetus). It is allograft-like because it comes from two individuals with unique genotypes from the same species. .

The placenta has been described as “the most important organ of the body, but paradoxically the most poorly understood” [1,2]. Examination of the placenta by the pathologist has been defined as a “gestation diary” [3]identifying conditions that are likely to recur in subsequent pregnancies, separating clinical syndromes into distinct pathological phenotypes for further investigation, and uncovering the underlying cause of unexpected adverse outcomes. Classification of placental lesions has evolved from being a purely descriptive exercise through a stage in which the major pathophysiological processes such as disorders of maternal implantation and the amniotic fluid infection syndrome were first described to a recently proposed comprehensive classification system that includes all of the major maternal and fetal vascular and infectious and idiopathic/immune inflammatory processes (Amsterdam Placental Workshop Group; assessment of stillbirth could not be complete without the  study of the placenta and vice versa [4]. Therefore, in medical-legal cases, “the placenta has played a pivotal role, and at times, stood in the forefront, not only as participant but also as witness”[5]. These types of cases have recently increased, in which the placenta is like a “black box” in a trial involving a medical malpractice lawsuit [6].

Odd as it may seem, study of the placenta in pathology departments is not mandatory, on the premise that most babies will be born healthy and therefore the placenta must also be healthy [7]. Most of the organs or pieces of tissue removed from any patient must be sent to the pathology lab for examination; the placenta is the most common exception to this requirement. Incongruous, as well, is the fact that the placenta is currently one of the most frequently examined specimens in pathology departments due to the large number of deliveries. The importance of the placenta is now a recognized factor in newborn prognosis, essential to explaining the causes for stillbirth; and, in the long-term it acquires medico-legal aspects when  later childhood neurodevelopmental delay are diagnosed [8, 9].

Additionally, the importance of placental examination in clarifying failed maternal reproduction has been on the rise in recent decades. Placental examination can also be directly requested by families themselves who want to know how etiology, prognosis, future outcomes, probabilities and any other information could be useful in analyzing future gestations among their own relatives. Therefore, in order to obtain the greatest amount of answers for families, the joint interpretation of the binomial fetus and placenta is mandatory [10, 11]. Furthermore, science appears to be rediscovering the placenta. The trophoblast and the other placental components are now being widely researched [12]. New techniques in molecular biology have brought about significant advances in epigenetics, imprinting, cell culture, genetic diseases, complete genome sequencing, and immunology, all of which have helped to expand our knowledge about placental components and their functions. Diseases like preeclampsia, with its enormous impact on fetal and maternal morbidity and mortality, are now being focused on, but despite the existence of a multitude of theories [13, 14], benefits to clinical application have yet to be seen. We still do not know enough about interactions between trophoblast and maternal immune cells [histiocytes and lymphocytes], the role of trophoblast in decidual and spiral arterial invasion, and other related issues.

  • The concept of two different circulatory systems belonging to two different individuals in the same organ is unique.
  • Understanding how each joined individual pumps its own circulation in not easy, even among students in advanced specialized medical studies.
  • The importance of the umbilical cord [UC] as a structure that carries fetal blood, which is akin to having the aorta and the cava vein outside the body, is not sufficiently recognized [Figure 1 highlights the placental tree as a continuity of fetal circulation].
  • The presence of a variety of special, temporary and unique cells –the trophoblast- with tumor-like behavior and tumor-like appearance  [invasive capacity, anisonucleosis, nucleomegaly, nuclear hyperchromasia and pleomorphic nuclei] [9], whose subdivisions in appearance and shape can be difficult to understand and even to pronounce [cytotrophoblast, syncytiotrophoblast, endovascular extravillous trophoblast, interstitial extravillous trophoblast].
  • The placenta does not respond in a single way to injuries, for example, to hypoxia [10]297 with uterine type of chronic hypoxic placental injury (group 2
  • The variety of normal and abnormal aspects that depend upon the age of gestation, its maturation [19]: nucleated fetal red blood cells [20], fibrin, syncytial knots, multinucleated extravillous trophoblast, amount of spiral artery muscle [21]and for this purpose they are remodelled into highly dilated vessels by the action of invading trophoblast (physiological change.
  • The placenta is an organ that plays many roles; no organ can match the placenta for functional diversity [1].

The principal aim of this article was to propose a clear simple method to describe the placenta to those individuals who have had little or no previous exposure; additionally, some specific aspects have been emphasized so that the significance, continuity and wholeness of the fetal-placental unit may be completely understood.

Methods And Materials

We performed a descriptive observational study on the placenta and used immunohistochemical staining to highlight its components; diagrams and microphotographs were referred to when explaining placental structures and functions.   Placental cases were collected that corresponded to samples studied at the PUJ-HUSI Department of Pathology from 2007 to 2017. A diagram of the placenta which illustrated its components, was created. This was accompanied by corresponding microphotographs, highlighted by immunohistochemistry staining, which differentiated cells and structures. Placental components were divided into fetal and maternal directions and vice versa, following the tree [Figure 1]. Then, slides were chosen from the available cases that had been collected for both diagnosis and research, and that had been tested with conventional immunohistochemistry on paraffin embedded tissue  [BAX, FAS, bcl2, p57, cMyc, IGF2, FGF2, VEGFA, VEGF R1, MMP1, VEGFB, TGFB3, Ki67, PLGF, thrombomoduline]. Antibodies that best highlight specific placental cell types were chosen for this purpose. Microphotographs were taken and included with explanatory diagrams.

UGFM2018-101-MercedesOlaya Colombia_F1

Figure 1. Unit fetus, umbilical cord and placenta

The figure represents the continuity from the fetal heart to the distal villi in the placenta. Blood is pumped from the fetal heart through the entire fetal body which also needs to be impulsed outside the body and  pass through the umbilical cord, as long as it can be. When the blood reaches the chorionic plate in the placenta, it is distributed in many branches, up to the last villi where the capillaries are close to the mother’s blood:  her blood functions like air moving around leaves. Afterwards, oxygenated blood must return to the fetal heart.

In the close up, a villous is shown. Fetal capillaries are carrying fetal circulation (F); around it, maternal blood is present (M).

Results

An overall diagram of the placenta was created [Figure 2] which was subsequently divided into the chorionic plate with umbilical cord, basal plate and placental disc. Ordinary placentas and placentas previously chosen for other studies were collected to illustrate structures, especially those that have received scant recognition. A work checklist was created and filled with data for future use with this collection; microphotographs were taken and selected for the abovementioned purpose . Approximately 80 immunohistochemical preparations were taken into account when spotlighting histological components. Some of said antibodies have not been described in the placenta. Different trophoblast cell types exhibit different expressions; for example, villous syncytiotrophoblast does not have the same expression as subchorionic plate syncytiotrophoblast or basal plate syncytiotrophoblast, for the MMP1 antibody, the explanation of which is beyond this paper’s goal.

UGFM2018-101-MercedesOlaya Colombia_F2

Figure 2. The placenta

The figure represents the placenta. Spiral arteries (A) are shown in the basal plate. Decidual cells (red hexagons) are mixed with endovascular extravillous trophoblasts (light green stars), interstitial extravillous trophoblasts (dark green rectangles); these cells also form columns of trophoblasts (B).

The trophoblast is always green in this figure, regardless of type. Syncytiotrophoblast overcoats the whole placental tree (light green rectangles) (D) and completely separates both circulatory systems (maternal and fetal); syncytiotrophoblast is also seen in maternal and fetal borders. Cytotrophoblast is beneath the villous syncytiotrophoblast. Fibrin is represented by a pink line (C). The amnion is on the fetal side (gray rectangles). In the chorionic plate, arterial (E) and venous vessels (F) can be seen, connected to the UC (G).

However, we suggest that cells of the same origin and denomination could have very different functions, but these have not been studied in-depth nor are they well understood. Simultaneously, the expressions of some antibodies were surprisingly high; as was the case of FAS, with regards to apoptosis; others were surprisingly low, like bcl2, with regards to anti-apoptosis. Protein expression analysis via immnunohistochemistry shows that cells normally seen as equals, are not; furthermore, their activities include unexpected biochemical pathways. The best antibodies chosen to be photographed and described are listed in Table 1.

Table 1. Antibodies in Figures:

[ ]: Concentration of primary antibody; C: clonality, M: monoclonal, P: polyclonal.

FIG

ANTIBODIES

CODE

LAB

[]

C

Control

Fig 3

 cMyc

(9E11): sc-47694

Santa Cruz Biotechnology Inc

1:1,000

M

Colon

Fig 3

 cMyc

(9E11): sc-47694

Santa Cruz Biotechnology Inc

1:1,000

M

Colon

Fig 3

 cMyc

(9E11): sc-47694

Santa Cruz Biotechnology Inc

1:1,000

M

Colon

Fig 3

FAS

(C-20): sc- 715

Santa Cruz Biotechnology Inc

01:25

P

Liver

Fig 4

VEGF-A

GTX102643

GeneTex

P

Riñón

Fig 4

VEGF-R1

GTX15294

GeneTex

P

Placenta

Fig 5

VEGF-R1

GTX15294

GeneTex

P

Placenta

Fig 5

p 57

SPM308:sc-56456

Santa Cruz Biotechnology Inc

01:50

M

Placenta

Fig 5

VEGF-A

GTX102643

GeneTex

P

Riñón

Fig 6

MMP1

GTX100534

GeneTex

P

Endometrial carcinoma

Fig 6

VEGF-R1

GTX15294

GeneTex

P

Placenta

Fig 6

VEGF-B

(J-14I): sc-80442

Santa Cruz Biotechnology Inc

01:50

M

Placenta /Heart

Fig 7

VEGF-R1

GTX15294

GeneTex

P

Placenta

Discussion

The complexity of the placenta can be simplified by following the blood flow through the fetal extracorporeal circulation from the umbilical cord, where the umbilical vein and arteries are crucial for fetal life, and on toward the maternal bed with its remodeled spiral arteries. Maternal arteries and their abnormal remodeling are now recognized as linked to some of the most important adverse outcomes. In order to better understand the placenta, it should be divided into the:

  • Fetal surface-umbilical cord
  • Fetal surface-chorionic plate
  • Placental disc
  • Maternal surface-basal plate

Fetal surface- umbilical cord

The placenta is an extension of the fetal cardiovascular system [Figure 1]. The umbilical cord [UC] is the bridge between the intra and the extracorporeal circulations. The UC protects the whole fetal blood volume by means of coiling and with Wharton’s jelly. Starting from the outside, the first layer of the UC is the amnion, which is firmly attached to the cord that protects Wharton’s jelly [Figure 3D]. Beneath the amniotic epithelial cells, Wharton’s jelly is interspersed with stromal cells [Figures 3C and 3D]; these are few, and they are spread haphazardly between the amnion and the blood vessels. The vessels are surrounded by myofibroblast, which are inconspicuous. The umbilical arteries and the vein lack a real adventitia, which is expected because of their size; therefore, the muscular layer is interlaced with Wharton’s jelly structures [Figure 3B]. This is why the umbilical vessels cannot be dissected. The venous and arterial walls contain smooth muscle [Figure 3B], perivascular and endothelial cells [Figure 3B]. The vein also has an unusual subintimal elastic layer [23]. The umbilical arteries, on the contrary, do not have an inner elastic layer as do the other great arteries within the body [24]porous Wharton’s jelly, two umbilical arteries, and one umbilical vein, are designed to protect blood flow to the fetus during a term pregnancy. The outer amnion layer may regulate fluid pressure within the umbilical cord. The porous, fluid filled Wharton’s jelly likely acts to prevent compression of the vessels. Blood flow is regulated by smooth muscle surrounding the arteries that is intermingled with a collagen based extracellular matrix (ECM; furthermore, in spite of their caliber, UC arteries have a much thinner outer elastic layer than would be expected [23]. The venous diameter is double that of the arterial diameter [Figures 4B] [25].

Once the UC contacts the placental disc on the fetal surface, ideally on the center or close to it and at a 90-degree angle, the chorionic plate has been reached [Figure 4A].

Fetal surface- chorionic plate

To reiterate, the closest layer to the fetus is the amnion [Figures 4C, E and F], but this amnion is not firmly attached here, as it is on the cord; conversely, the union is virtual. Grossly the chorionic plate is bluish in color, but up close, transparent,  which allows the vessels branching out on the surface to be seen. It should also be possible to distinguish veins from arteries [Figure 4A]: the arteries are on top of the veins. Histologically, the amnion looks like the UC, with a single organized layer of cuboidal cells.

Located under the amnion is the chorionic tissue [Figures 4D, E and F]; it also looks like the UC: hypocellular and with large fetal vessels. Each fetal vessel should not be more than three times larger than the adjacent vessels [24]such as true knots (TK. Behind the chorionic layer the trophoblastic cell layer is found [Figures 4E and F [green]], the trophoblast cell layer covers the inner part of the placenta including each small terminal villi [25], which has also been described in mice [26]. The human placenta is hemochorial, the maternal blood has contact with the trophoblast, but the trophoblast isolates the branched tree, including the chorionic and basal plates inside the disc [Figures 2, 4, 5 and 6].

UGFM2018-101-MercedesOlaya Colombia_F3

Figure 3. The umbilical cord

A – The UC clearly exhibits the amnion surrounding it; in the center, the umbilical artery (cMyc 4x). B- In the umbilical artery, the smooth muscle with the nondefined border (long white arrow) can be seen; in the center of the vessel, darker cells, the endothelium (short brown arrow) (cMyc 10x). C- Stromal cells in the Wharton´s Jelly (cMyc 40x). D- From left to right, vascular wall, Wharton´s Jelly with stromal cells and in the border, the amnion (brown arrow) (FAS 10X).

UGFM2018-101-MercedesOlaya Colombia_F4

Figure 4. The chorionic plate

A – Gross placental morphology on the fetal side. UC Insertion is close to the center and placed at a 90o angle; the placenta is covered by the amnion; fetal surface is bluish in color. The chorionic vessels can be seen on the surface. The membranes are upside down (white arrow). B- A histological microphotograph of the UC with two arteries and one vein; the vein is twice the size of the arteries. C- The amnion covering the UC surface can be seen at the top and the artery exhibits its thick smooth muscular layer (VEGF-A 2x). D- The chorionic vessel is shown and the villi are immediately below it (H&E 2X). E- The figure represents the chorionic plate and its continuity with the UC and with the villi. F- As in Figure D, the amnion can be recognized at the top, the artery is in the chorionic plate. Here, the fibrin is clear and the syncytiotrophoblast is highlighted (green arrow) (VEGF-R1 10X); this syncytiotrophoblast is covering the chorionic plate, isolating the maternal and fetal circulatory systems.

UGFM2018-101-MercedesOlaya Colombia_F5

Figure 5. The placental disc

A – Gross placental morphology of the villi, which resemble tiny fingers. B- The figure represents the inside of the placenta; each villous carries capillaries and is covered by syncytiotrophoblast. C-Transversal view of the villous placental tree; the syncytiotrophoblast is highlighted; note the syncytial knots (VEGF-R1 20X). D- Transversal view of the villous placental tree; villi are separated; in the space between them, maternal blood circulates (H&E 10X). E- Transversal view of the villous placental tree; the cytotrophoblast is highlighted, behind the syncytiotrophoblast (p57 10X). F- Transversal view of the villous placental tree; fetal capillaries are highlighted insight the villi. The surrounding blue colored nucleuses correspond to stromal cells (VEGF-A 20X).

UGFM2018-101-MercedesOlaya Colombia_F6

Figure 6. The basal plate 1

A – Gross placental morphology of maternal surface; the placental cotyledons are discreetly outlined. Membranes were removed. The UC is seen on top. B- The figure represents some contact between the anchoring villi and the basal plate. The syncytiotrophoblast continues isolating both circulations, now covering behind the decidua (C), like a line. Also, the trophoblast columns can be distinguished (dark green). The interstitial extravillous trophoblast (dark green squares) and intravascular extravillous trophoblast (light green stars) in spiral artery walls are represented. C- The syncytiotrophoblast behind the basal plate is seen (MMP1 20X). D- The basal plate with its mixed cell population is exposed: decidualized (maternal) cells and interstitial extravillous trophoblast (arrows) (H&E 10X). E-Immunohistochemistry microphotograph highlights the interstitial extravillous trophoblast (green arrows) (VEGF-R1 10X). F- Immunohistochemistry staining highlights the endovascular extravillous trophoblast (VEGF-B 10X). G- The endovascular extravillous trophoblast can be easily seen in routine preparations (H&E 40X).

Placental disc

Trophoblast cells that protect the contact area, which extends all around the internal placental disc, between the two circulations, were highlighted in Figure 2 [light green rectangles]. Figures 2 to 6 show this trophoblast cell layer, and demonstrate their different roles in different locations since their respective protein expression is not the same. The placental disc can be represented as a villous tree, whose branches only distribute fetal necessities, moving from the fetal heart to the terminal villi upstream and downstream. The maternal blood supply in the intervillous spaces is distributed like air among branches and leaves [27], coming from remodeled arteries which have lost their muscle and have larger lumens and are less resistant to flow, and, hence, have less pressure [Figures 1, 2, 5 and 7]. The intervillous space should only contain maternal blood, without obstructions [Figures 5]. Syncytiotrophoblast cells are multinucleated fused cells whose surfaces are covered by a dense network of branched microvilli that encompass an area of 12 m2 in the final stage of human gestation [28] [Figure 5].

UGFM2018-101-MercedesOlaya Colombia_F7

Figure 7. The basal plate 2

A – Gross placental morphology of maternal surface, bilobate shape is recognized. B- The figure represents some contact between anchoring villi and basal plate. Maternal spiral arteries can be seen. C- Decidua cell are pale, with bland nucleus (H&E 10X). D-The decidua is delineated by immunohistochemistry staining (VEGF-R1 40X). E- A remodeled artery is shown, the once normal thick wall is now, during normal gestation, vena-like (H&E 10X). F-The anchoring villous is observed in contact with the decidua  (H&E 4X).

Fetal and maternal circulations are separated. The fetal system is located in the villi and is separated from the maternal system by:  the vasculosyncytial membrane;(this membrane decreases in thickness as pregnancy progresses; it is composed of:  the endothelium inside the villi, the basement membrane and some connective tissue), by a layer of discontinuous cytotrophoblast cells that also decreases progressively, and by the syncytiotrophoblast and its basal membrane [29].

There are other special structures, the anchoring villi, which attach the placental tree to the decidualized endometrium, forming columns of trophoblast [Figure 7]. Other specialized septa divide placental regions into cotelydons.

Maternal surface- basal plate

The above mentioned cotyledons are easily discernible, grossly recognizable circular structures [Figures 6A and 7A]. They are inconspicuously covered by decidua, called basal decidua. Microscopically, the basal plate represents the other fetus-maternal interface, where the immunological dialogue occurs. The invasive trophoblast penetrates the decidua at the implantation site and remodels the maternal arterioles, including the endovascular extravillous trophoblast and the interstitial extravillous trophoblast, both kinds of trophoblast work together in vascular remodeling [30] [Figure 6]. Beneath the decidua, the above mentioned insulation trophoblast is also present [Figure 6C]. This part of the placenta is currently the most interesting because of its link to gestational diseases. The interaction between histiocytes and lymphocytes has not been determined; we know only that it is important. Large numbers of histiocytes and lymphocytes in the decidua, especially in the presence of plasma cells, suggest pathology. Endovascular extravillous trophoblast, interstitial extravillous trophoblast, columns of trophoblast and anchoring villi play a major role in fetal-placental interaction and correct gestational course, but their different behaviors deserve further study. The decidual component is also important, including spiral arteries; however, their active function in supplying blood remains poorly understood [Figures 6 and 7].

Limitations of the present study are related to population type; selection bias is due to our hospital´s highly complex population, which means that a larger number of complicated gestations with abnormal placentas exist than in the number shown; many of these gestations also belong to the Hypertensive Disorders of Pregnancy context. We would like to have access to before-and-after studies in order to better compare our students’ comprehension of the information they have been provided.

Conclusion

The placenta is now, more than ever, the focus of multiple investigations related to the evolution, development, health and etiology of disease. New and improved approaches are needed to further our knowledge on the placenta.

Acknowledgements

We wish to thank the Hospital Universitario San Ignacio- Pontificia Universidad Javeriana for its indispensable support and participation in this study. We also extend our thanks to the parents who participated in this study and to Steven W. Bayless for the English text correction.

Financial Disclosure

This study makes up part of the research project entitled, “Factors that determine umbilical cord length”, [ID PPTA 00005140] financed by the Pontificia Universidad Javeriana and its Hospital Universitario San Ignacio. Bogota, Colombia.

References

  1. Burton GJ,  Jauniaux E (2015) What is the placenta? Am J Obstet Gynecol 213: S6. [crossref]
  2. Grigsby PL. Animal Models to Study Placental Development and Function throughout Normal and Dysfunctional Human Pregnancy. Semin Reprod Med 34:11–6.
  3. Redline RW1 (2015) Classification of placental lesions. Am J Obstet Gynecol 213: S21–28. [crossref]
  4. Gillan JE1 (1992) Perinatal placental pathology. Curr Opin Obstet Gynecol 4: 286–294. [crossref]
  5.  Baergen RN1 (2007) The placenta as witness. Clin Perinatol 34: 393–407. [crossref]
  6. Redline RW1 (2008) Placental pathology: a systematic approach with clinical correlations. Placenta 29 Suppl A: S86–91. [crossref]
  7. Howat A. Histopathology and cytopathology of limited or no clinical value. Work Party Hystopathology Cytopathol Ltd or No Clin Value 1–13.
  8. Redline RW (2013) Correlation of Placental Pathology with Perinatal Brain Injury. Surg Pathol Clin 6: 153–180. [crossref]
  9. Redline RW, Minich N, Taylor HG, Hack M (2007)  Placental lesions as predictors of cerebral palsy and abnormal neurocognitive function at school age in extremely low birth weight infants. Pediatr Dev Pathol 10:282–92.
  10. Gilbert-Barness E, Debich-Spicer D (2005) The placenta. In: Gilbert-Barness E, Debich-Spicer D, editors. Handbook of Pediatric Autopsy Pathology. First. New Jersey: Humana Press 117–42.
  11. Boyd T, Redline R. Pathology of the placenta (2007) In: Gilbert-Barness E, editor. Potter’s Pathology of the fetus, infant and child. Second. Philadelphia: Mosby Elsevier 645–93.
  12.  Ahmed A, Ramma W (2015) Unravelling the theories of pre-eclampsia: are the protective pathways the new paradigm? Br J Pharmacol 172: 1574–1586. [crossref]
  13. Schlembach D (2003) Pre-eclampsia–still a disease of theories. Fukushima J Med Sci 49: 69–115. [crossref]
  14.  Mignini LE, Villar J, Khan KS (2006) Mapping the theories of preeclampsia: the need for systematic reviews of mechanisms of the disease. Am J Obstet Gynecol 194: 317–321. [crossref]
  15.  Maltepe E, Fisher SJ (2015) Placenta: the forgotten organ. Annu Rev Cell Dev Biol 31: 523–552. [crossref]
  16. Carter AM (2007) Animal models of human placentation–a review. Placenta 28 Suppl A: S41–47. [crossref]
  17. Benirschke K, Burton G, Baergen R. Abortion and the Placenta in Chromosomal Anomalies. In: Benirschke K, Burton G, Baergen R, editors. Pathology of the human placenta. 6th ed. New York: Springer 173–89.
  18. Stanek J (2016) Chorangiosis of Chorionic Villi: What Does It Really Mean? Arch Pathol Lab Med 140: 588–593. [crossref]
  19. Mayhew TM, Burton GJ (1997) Stereology and its impact on our understanding of human placental functional morphology. Microsc Res Tech 38:195–205.
  20. Redline RW. Elevated circulating fetal nucleated red blood cells and placental pathology in term infants who develop cerebral palsy. Hum Pathol 39:1378–84.
  21. Pijnenborg R, Vercruysse L, Hanssens M (2006) The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 27:939–58.
  22. Mirkovic J, Elias K, Drapkin R, Barletta JA, Quade B, et al. (2015) GATA3 expression in gestational trophoblastic tissues and tumours. Histopathology 67:636–44.
  23. Ernst LM (2011) Placenta. In: Ernst LM, Ruchelli ED HD, editor. Color Atlas of Fetal and Neonatal Histology. First edition. Chicago: Springer 363–88.
  24. Ferguson VL, Dodson RB (2009) Bioengineering aspects of the umbilical cord. Eur J Obstet Gynecol Reprod Biol 144 Suppl 1: S108–113. [crossref]
  25. Baergen R (2005) Microscopic Evaluation of the Second and Third Trimester Placenta. In: Baergen RN, editor. Manual of Benirschke and Kaufmann’s Pathology of the Human Placenta. First. New York: Springfield 45–66.
  26. Chan JSY, Baergen RN (2012) Gross umbilical cord complications are associated with placental lesions of circulatory stasis and fetal hypoxia. Pediatr Dev Pathol 15:487–94.
  27. Lowe JS AP (2014) Reproductive system: placental structure. In: Lowe JS AP, editor. Human Histology: With student consultt Online Access. Third edition. Philadelphia: Elsevier Health Sciences 345–71.
  28. Walentin K, Hinze C, Schmidt-Ott KM (2016) The basal chorionic trophoblast cell layer: An emerging coordinator of placenta development. BioEssays 38:254–65.
  29. Zeldovich VB, Clausen CH, Bradford E, Fletcher DA, et al. Placental syncytium forms a biophysical barrier against pathogen invasion. PLoS Pathog 9:e1003821.
  30. Castellucci M, Kaufmann P (2006) Basic Structure of the Villous Trees. In: Benirschke K, Burton G, Baergen R., editors. Pathology of the human placenta. 6th ed. New York: Springer 50–120.
  31. Benirschke K, Burton G, Baergen R (2012) Histology of the Chorionic Villi, Fetal Membranes, and Umbilical Cord. In: Benirschke K, Burton G, Baergen R., editors. Pathology of the human placenta. 6th ed. New York: Springer 80–95.
  32. Brosens IA, Robertson WB, Dixon HG (1972) The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet Gynecol Annu 1: 177–191. [crossref]