Article Page

Abstract

Recently we proposed “a new interpretation of quantum mechanics (called quantum and classical measurement theory)” in this journal (JQIS: Vol. 1, No. 2), which was characterized as the metaphysical and linguistic turn of quantum mechanics. This turn from physics to language does not only realize the remarkable extension of quantum mechanics but also yield the quantum mechanical world view (i.e., the philosophy of quantum mechanics). And thus, the turn urges us to dream that traditional philosophies (i.e., Parmenides, Plato, Aristotle, Descartes, John Locke, Berkeley, Hume, Kant, Saussure, Wittgenstein, etc.) can be understood in the quantum mechanical world view. This dream will be challenged in this paper. We, of course, know that most scientists are skeptical to philosophy. Still, we can expect that readers find a good linguistic philosophy (i.e. philosophy of language) in quantum mechanics. Quantum Mechanics and the Philosophy of Language: Reconsideration of Traditional Philosophies Aggregation simulated studies on Amyloid β-sheet helix-rich Val-Gly-Gly-Ala-Thr-Thr-Thr-Gly-Val-Thr peptide mimic modulators of α-Synuclein aggregation as a emerging template for drug discovery in α-synucleinopathy interfering amyloidogenesis pathways. There is evidence that the α-synucleinopathies Parkinson’s disease (PD) and the Parkinson variant of multiple system atrophy (MSA-P) overlap at multiple levels. Both disorders are characterized by deposition of abnormally phosphorylated fibrillar α-synuclein within the central nervous system suggesting shared pathophysiological mechanisms. Currently, there is no disease-modifying treatment for MSA. In other senses, it has been previously shown that next-generation active vaccination technology with short peptides, AFFITOPEs®, was effective in two transgenic models of synucleinopathies at reducing behavioral deficits, α-syn accumulation and inflammation. We demonstrate here for the first time a drug discovery platform for the Quantum Mechanics and the Philosophy of drug discovery Language: Reconsideration of Traditional Aggregation simulated studies on Amyloid β-sheet helix-rich Val-Gly-Gly-Ala-Thr-Thr-Thr-Gly-Val-Thr peptide mimic modulators of α-Synuclein aggregation as a emerging template for drug discovery in α-synucleinopathy interfering amyloidogenesis pathways.

Keywords

Aggregation; simulated studies;Amyloid β-sheet; helix-rich;peptide mimic; modulators;
α-Synuclein; aggregation;emerging; template;drug discovery;α-synucleinopathies;interferin;gamyloidogenesis pathways; Quantum Mechanics; Philosophy of Language;

Article Type

Research Article – Abstract

Publication history

Received: Sep 20, 2017
Accepted: Sep 25, 2017
Published: Oct 01, 2017

Citation

Grigoriadis Ioannis, Grigoriadis George, Grigoriadis Nikolaos, George Galazios (2017) Quantum Mechanics and the Philosophy of drug discovery Language: Reconsideration of Traditional Aggregation simulated studies on Amyloid β-sheet helix-rich Val-Gly-Gly-Ala-Thr-Thr-Thr-Gly-Val-Thr peptide mimic modulators of α-Synuclein aggregation as a emerging template for drug discovery in α-synucleinopathy interfering amyloidogenesis pathways.

Authors Info

Grigoriadis Nikolaos
Department of IT Computer Aided Personalized Myoncotherapy, Cartigenea-Cardiogenea, Neurogenea-Cellgenea, Cordigenea-HyperoligandorolTM,
Biogenea Pharmaceuticals Ltd,
Thessaloniki, Greece;

Grigoriadis Ioannis
Department of Computer Drug Discovery Science, BiogenetoligandorolTM,
Biogenea Pharmaceuticals Ltd,
Thessaloniki, Greece;

Grigoriadis George
Department of Stem Cell Bank and ViroGeneaTM,
Biogenea Pharmaceuticals Ltd,
Thessaloniki, Greece;

George Galazios
Professor of Obstetrics and Gynecology,
Democritus University of Thrace,
Komotini, Greece;

E-mail: biogeneadrug@gmail.com