Abstract
An increased occurrence of aromatic residues in natural core sequences has led to widespread conclusions about the crucial role played by these residues in molecular recognition and self-assembly. Comparing the self-assembly of our fully aliphatic designed peptides with natural core sequences would also help to determine the significance and effect of π–π interactions on amyloid formation. The major hallmark of Parkinson’s disease (PD) is the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to the characteristic motor symptoms of resting tremors, bradykinesia and rigidity. The aim of the present study is to give a scaffolding hope recoring chemogenomic machine learning platform of the generation of innovative neuroprotective agents and improve their targetability to conserved binding short linear motif domains that are currently investigated for the treatment of PD in phase I-III clinical trials. The aim of the present study is aldo to in silico discover a gallic acid (GA) (3,4,5-trihydroxybenzoic acid), a benzoic acid derivative that belongs to a group of phenolic compounds known as phenolic acids by employing an array of biophysical. bioinformatic, chemicalinformatic and quantum molecular mechanics techniques to generate an α-syn fibrillation inhibitor to in silico disaggregate preformed α-syn amyloid fibrils. Additionally, by using structure activity relationship data obtained from fourteen structurally similar benzoic acid derivatives, it was determined that the inhibition of α-syn fibrillation by GA is related to the number of hydroxyl moieties and their position on the phenyl ring. GA may represent the starting point for designing new molecules that could be used for the treatment of PD and related disorders by challenging the importance of Oscillation and Asymptotic Behaviour of aromatic Solutions of Nonlinear Two-Dimensional Neutral Delay Difference Systems in amyloidosis aromatic interactions via aliphatic LD6(LAGD), ID3(IVD) and KE7(KLVFFAE) peptides, as a novel GA-biophoric scaffold for the generation of similar self-assembly chemico-lead molecules to amyloid core sequences.
Keywords
Challenging importance; aromatic interactions; amyloidosis;aliphatic;extensively; ultrasmall; peptides;novel biophoric scaffold;computer-aided; generation;similar self-assembly;chemico-lead; molecules; amyloid; core sequences; Oscillation;Asymptotic Behaviour; Solutions; Nonlinear; Two-Dimensional; Neutral Delay; Difference Systems; aliphatic; LD6(LAGD), ID3(IVD);KE7(KLVFFAE); peptides, novel; GA-biophoric scaffold; generation of similar; self-assembly; chemico-lead; molecules; amyloid; core sequences;