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Abstract

In a century of research, it has gradually become clear that glucagon should no longer be considered only as a counter-regulatory hormone of 
insulin accordingly to its role in the physiopathogenesis of metabolic pathologies such as diabetes, obesity and fatty liver appears to be decisive. As 
hyperglucagonemia represents the common feature of various metabolic pathologies not only in adults but also in pediatric patients, glucagon can be 
a problem but also a solution in the field of metabolic diseases. In fact, opposing therapeutic strategies have been developed which inhibit or enhance 
the activity of glucagon depending on the clinical situation and are also applied in pediatric age. This review aims to take stock of the situation on the 
physiopatogenetic role of glucagon in metabolic pathologies and bring together the dots of recent discoveries leading to the hypothesis of new solutions 
in the management and prevention ofthesepathologies.
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Introduction

In 2023 we celebrated the centenary of the discovery of glucagon, 
which occurred almost by chance since it was initially isolated as a 
contaminant of the first insulin preparations in 1923. However, 
the hormonal role of glucagon was only established in the 1950s. 
Recently, animal and human studies have confirmed the essential 
role of glucagon in glucose metabolism but have suggested equal 
importance for amino acid and lipid metabolism [1]. As considered 
an anti-insulin hormone, it was early on used to treat insulin-induced 
hypoglycemic coma episodes in people with Type 1 Diabetes Mellitus 
(T1DM). Nevertheless, a key step in the history of glucagon has been 
the discovery of its role and the role of α-cells in the physiology and 
pathophysiology of Type 2 diabetes (T2DM) and obesity [2]. In the 
last decades, research on glucagon has been slowed down by the 
difficulty encountered in carrying out glucagonemia measurements 
[3] which seems to have been overcome thanks to the development 
of a new high-quality ELISA method [4]. Currently, a century after 
the discovery of glucagon, there is still a lot to learn about this 
second pancreatic hormone and it seems necessary to re-elaborate 
the discoveries achieved so far to lay the foundations for innovative 
research projects.

Necessary Physiology Hints

Glucagon was initially known to be antagonist to insulin for its 
opposite metabolic effects on glucose metabolism. In particular, 
glucagon acts directly on glucose metabolism through three main 
mechanisms: in the liver, glucagon increases glucose production by 
stimulating glycogenolysis and gluconeogenesis [5] while in adipose 
tissue, glucagon stimulates lipolysis with the release of fatty acids and 

subsequent formation of ketone bodies in the liver [6] resulting both 
in a net increase of blood glucose levels; in contrast, glucagon acts 
on β-cells by inhibiting insulin production, thereby, giving a major 
contribute in maintaining glucose homeostasis. Therefore, glucagon 
binds specifically to Glucagon Receptor (GCGR), detected mainly in 
b-cells, liver cells and adipocytes [7]. However, the glucagon receptor 
has a wide distribution in the body and this explains its multiple known 
and potential effects. In fact, GCGR is also found in kidneys, heart, 
lymphoblasts, spleen, brain, adrenal glands, retina, and gastrointestinal 
tract [8]. Glucagon also controls indirectly blood sugar levels in the 
kidney through renal excretion by increasing water reabsorption 
and glomerular filtration and thereby glucose reabsorbtion [9]. 
Nevertheless, it is currently known that the role of glucagon is not 
limited to maintaining glucose homeostasis. In fact, glucagon appears 
to be the basis of a physiological response of satiety induced by meal, 
as glucagon concentrations increase during the consumption of a 
mixed meal [10]. The regulatory mechanisms that control glucagon-
induced satiety are poorly understood but mediation of vagal afferent 
fibers in the hepatic branch that transmit signals to the central nervous 
system is hypothesized [5]. Furthermore, Glucagon promotes weight 
loss having a direct effect on slowing gastric emptying and increasing 
energy expenditure [11]. The mechanism of action of glucagon in the 
remaining areas of the body where its receptor is represented, such 
as retina, heart and gatrointestinal tract, still remains to be clarified.

Glucagon and Liver-α cell Axis

The main end organ for glucagon is the liver where a feedback 
axis, the “liver-alpha cell axis” (Figure 1), has been established [12]. 
In fact, the net increase in hepatic plasma glucose secretion, due to 
glucagon induced glycogenolysis and gluconeogenesis, determines 
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a direct inhibition of glucagon secretion from α-cells. Furthermore, 
glucagon increases hepatic absorption and turnover of amino acids, 
leading to decreased aminoacids levels and inducing, thereby, 
ureagenesis, which again reduces the secretion of glucagon. Also, 
glucagon increases hepatic β-oxidation and decreases lipogenesis, 
lowering the circulating concentration of free fatty acids (FFAs). 
Although, a plausible mechanism through which lower circulating 
FFAs may inhibit glucagon secretion has not yet been established [6].

Hyperglucagonemia: The Main Character

Metabolic disorders have long been thought to be caused by 
total or relative insulin deficiency: this is known as Insulin-centric 
theory [13]. However, in 1978 Unger and collaborators, in contrast 
to the insulinocentric theory and in light of discovery of the effects of 
glucagon, proposed the theory of bihormonal regulation [14]. They 
found that some metabolic disturbances associated with diabetes, 
such as elevated lipolysis, increased proteolysis, and impaired glucose 
utilization are directly caused by insulin deficiency; while others, 
such as decreased glycogensynthesis, increased ketogenesis, elevated 
liver glycogenolysis, and gluconeogenesis, are direct effects of excess 
glucagon. Lately, between the end of the twentieth century and the 
beginning of the twentyfirst century, the glucagonocentric theory was 
established, already intuited by Unger and his collaborators, supported 
by the following evidence: in mice lacking GCGR, insulin deficiency 
does not cause hyperglicemia, in humans hyperglucagonemia has 
been established in all forms of diabetes, therefore, excess glucagon 
represents the sine qua non for the development of hyperglycemia 
[15]. Physiologically, hypoglycemia represents the main stimulus to 
glucagon secretion. However, in individuals with diabetes, therefore 
in conditions of hyperglycemia, there is a paradoxical increase in 
glucagon in conditions of hyperglycemia. Until recently, this dynamic, 
which leads to hyperglucagonemia, was explained exclusively through 
the tonic inhibition exerted by insulin on α-cells, in light of the concept 
of unidirectional flow from beta to alpha cells [16]. Until the 2000s, it 
was, therefore, thought that the impact of alpha cells on β cell function 

was negligible, probably because the studies were mostly based on 
rodent islets in which α-cells are less represented than in humans 
[17]. Eventually, in the new millennium, a more sophisticated model 
of intra-islets vascular system with bidirectional flow and circulation 
integrated with the exocrine pancreas, was recognized. Therefore, an 
active role of α-cells has been recognized from both a physiological 
and pathophysiological point of view, leading to the concept of cross-
talk between alpha- and beta-cells [18].

The Role of the Inter-cellular Cross-talk

Glucagon and insulin receptors are expressed on both alpha- and 
beta-cells, proving that there is a reciprocal relationship between 
them. Insulin exerts a tonic inhibition on glucagon production by 
α-cells directly through insulin receptor, therefore, a decrease in 
insulin induces increased glucagon production [19]. As GCGRs are 
more abundant in β-cells than Insulin Receptors in α-cells, it has been 
demonstrated that glucagon secretion acts a direct effect on insulin 
release [20]. Moreover, in condition of hyperglycemia, β-cells in close 
contact with the alpha cells release more insulin compared with β-cells 
deprived of these contacts [21]. It has also been shown that people 
with T2DM show elevated α-cell-to-β-cell mass ratios, potentially 
because α-cells are necessary for mantaining β-cell insulin secretion 
[22]. Although the action on GCGR, glucagon seems to stimulate 
insulin secretion predominantly via the GLP1 (glucagon-like peptide 
1) receptor expressed on β-cell surface [23].

Hyperglucagonemia: The Common Feature

It is known that T1DM and T2DM recognize a different pathogenesis, 
but these two pathologies have in common hyperglucagonemia whose 
pathogenetic role has long been overlooked. Lack of postprandial 
suppression and subsequent glucagon hypersecretion is characteristic 
in patients with T1DM or T2DM [24]. Even individuals with subtle 
glucose metabolism disturbances without having clear diabetes 
mellitus may have excess glucagon in response to the OGTT [25]. 
Different causes of hyperglucagonemia can be hypothesized and, 
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Figure 1: The liver-α-cell-axis in health. Modified from American Diabetes Association [The Liver-α-Cell Axis in Health and in Disease, American Diabetes Association, 2022]. Copyright and 
all rights reserved. Material from this publication has been used with the permission of American Diabetes Association.
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although it seems difficult to make a clear distinction between 
metabolic pathologies, since some of them constitute a continuum, 
recognizing the predominant mechanism in each of them could guide 
the therapeutic choice and determine a better efficacy, as summarized 
in the Table 1.

Hyperglucagonemia in Obesity and NAFLD

It is known that Nonalcoholic Fatty Liver Disease (NAFLD) 
represents the most common chronic liver disease in children and 
adolescents and represents an early risk factor for the development 
of obesity and T2DM [26]. Studies revealed that hyperglucagonemia 
is more closely related to obesity and fatty liver disease than to 
diabetes: fasting hyperglucagonemia also occurs in individuals with 
obesity and normal glucose tolerance [27]. The proposed hypothesis 
is that NAFLD drives hepatic resistance to glucagon by altering the 
liver-alpha cell feedback mechanism (Figure 2) and thus resulting in 
increased circulating levels of aminoacids that stimulate α-cells to 
secrete glucagon resulting in hyperglucagonemia [28]. In fact, a study 
conducted in 2020 showed greater glucagon resistance at the level 
of liver aminoacid turnover in individuals with obesity and NAFLD 
compared to healthy lean (non-steatotic) individuals [29]. Given its 
causal role in hyperglucagonemia, plasma glucagon concentration 
could also be useful for identifying pediatric patients most at risk for 
NAFLD [30].

Hyperglucagonemia in Obesity and T2DM

In metabolic disorders such as T2DM and obesity the alteration 
of incretin production seems to prevail as possible mechanism 

responsible for hyperglucagonemia. About that, a study was 
conducted on patients aged 10 to 18 years with obesity and varying 
glucose tolerance from Impaired Glucose Tolerance (IGT) up to 
T2DM compared to controls with normal glucose tolerance. The 
authors demonstrated that, compared to controls, obese patients 
with impaired glucose tolerance exhibit a reduction in GLP1 levels 
in parallel with the increase in postprandial glucagon levels while 
an increase in fasting glucagon levels in parallel with a reduction in 
fasting GLP-1 levels [31]. These differences became more evident the 
more glucose tolerance was reduced. Therefore, an important role 
must also be recognized in the alteration of incretin levels. In light of 
this, it seems reasonable to deduce that T2DM therapy with GLP1 has 
a stronger rationale rather than metformin. Furthermore, a chronic 
hyperglycemic condition has been shown to increase the expression 
of the GCGR on the liver and decrease its downstream signaling. 
This means that a real mechanism of hepatic receptor resistance to 
glucagon is established [32]. Additionally, it is also hypothesized that 
the pathophysiology of T2DM is based on a mutation in the gene that 
codes for the GCGR [33,34].

Hyperglucagonemia and T1DM

In the light of what has been seen on the interaction between alpha- 
and beta-cells, in subjects affected by T1DM, insulin deficiency leads 
to the lack of tonic inhibition exerted by β-cell on α-cell, therefore, 
there is an increase in glucagonemia. Additionally, glucagon seems to 
play a crucial role especially evident in case of diabetic ketoacidosis 
(DKA) [35]. Thus, in insulin deficiency, glucagon prevails, FFAs are 
transferred from the circulation to the mitochondria of the liver cells. 
Then, the oxidation of FFAs takes place, and acetyl-CoA is produced 
and is used for the synthesis of ketone bodies [36]. However, there 
is a difference between the ketogenesis induced by physiological 
conditions such as fasting in order to find an alternative source of 
energy and the ketogenesis induced by pathological conditions like 
uncontrolled T1DM [37] in which it is the result of dysregulated 
metabolism and a lack of insulin and is not intended to function 
as an energy source [38]. It is widely known that DKA can cause 

Figure 2: The liver-α-cell-axis in disease. Modified from American Diabetes Association [The Liver-α-Cell Axis in Health and in Disease, American Diabetes Association, 2022]. Copyright and 
all rights reserved. Material from this publication has been used with the permission of American Diabetes Association.

Main causes of hyperglucagonemia Metabolic pathologies

1)	 Lack of suppression from insulin deficit T1DM

2)	 Role of incretins T2DM – OBESITY

3)	 Liver glucagon receptor resistance T2DM – OBESITY

4)	 altered liver-alpha cell axis NAFLD

Table 1: Different causes of hyperglucagonemia.
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several adverse events and multiply the risk of developing diabetic 
complications as ketones lead to increased oxidative stress and 
inflammation which affect mainly cardiomyocytes, erythrocytes, 
and endothelial cells [39]. Additionally, elevated plasma ketone 
concentrations appear to be involved in reducing cell surface insulin 
receptors, leading to increased Insulin Resistence [40]. Since during 
DKA glucagon production is increased and is responsible for harmful 
effects on the body exactly like insulin deficiency, it could probably 
be useful to intervene on hyperglucagonemia and not just manage 
hyperglycemia and insulin deficiency.

Therapeutic Perspectives in Metabolic Disorders

Hyperglucagonemia and α-cell hyperplasia drive and accelerate 
metabolic dysfunction [41]. However, studies indicate that, through 
intra-island paracrine communication, α-cells could enhance β-cell 
function and preserve them. In fact, increased secretion of glucagon 
in metabolic diseases is the result of an α-cell and possibly also gut-
derived adaptation for the maintenance of energy balance in favor of 
the β cells [42]. Whether hyperglucagonemia in metabolic disease 
is a pathogenic responsible or represents a metabolically helpful 
adaptation remains unclear [43].

What is the appropriate therapeutic approach? In consideration 
of the fundamental role that glucagon plays in the pathogenesis of 
metabolic disorders, the main current therapies and those currently 
under study are based precisely on the management of glucagonemia. 
The best choice of type of therapy depends on the type of metabolic 
disorder and its stage.

Glucagon Antagonism

Hyperglycemia patients treated with insulin is driven, at 
least in part, by hyperglucagonemia and, therefore, contrastable 
by antagonization of glucagon secretion or action [44]. GCGR 
antagonism has been proposed as a pharmacological approach 
for the treatment of T1DM or T2DM, and it is possible through 
receptor antagonists, monoclonal antibodies (mAbs) against GCGR 
and antisense oligonucleotides that reduce receptor expression [45]. 
GCGR mAbs can also induce b-cell regeneration through the trans-
differentiation of a portion of pancreatic α-cells or δ-cells into β-cells 
[46]. A single dose of REMD-477 (Volagidemab) significantly reduces 
insulin requirement in patients with T1D improving glycemic control 
without serious adverse reactions [47]. Data are limited and require 
further study.

The Multi-effectiveness of GLP-1 Analogues

Last but not least Glp-1 analogues (GLP1A) are now well-known 
and widely used drugs for the treatment of obesity, but they seem even 
more effective than insulin and metformin in the management of T2DM 
and could find application as an additional therapy also in T1DM.

The strength of the GLP1A is represented by its pleiotropy: 
enhances glucose-dependent insulin secretion; inhibits glucagon 
secretion; promotes the survival, growth and regeneration of 
pancreatic β-cells; slows gastric emptying and reduces food intake 
(GLP1A also find application in the pharmacological therapy of 
pediatric obesity)[48].

It is reasonable to assume that even with GCGR mutations in 
β-cells, the binding of glucagon to GLP-1R is conserved, therefore, 
GLP-1A overcome the limits of GCGR antagonism too.

GLP-1A in T2DM

Currently, first-line therapies for the treatment of T2DM in 
children over 10 years of age and adolescents, in addition to diet and 
exercise, include insulin and metformin while GLP-1A as a second line. 
Nowdays the incidence of juvenile-onset diabetes (JOD) is increasing 
accordingly the increasing prevalence of obesity in adolescents [49] 
and it must be considered that, compared with adult-onset T2DM, JOD 
is associated to: more severe impairment of pancreatic B-cell function, 
which is further complicated by the increase in insulin resistance 
associated with obesity and puberty; higher rates of microvascular and 
macrovascular complications, despite a shorter disease duration than 
in other types of diabetes; higher treatment failure rate of metformin, 
which is used as a first-line drug for type 2 diabetes [50]. Therefore, 
there will likely be an increasing use of GLP-1A prior to the initiation 
of insulin given their potential benefits on weight and glycemic 
control but especially the antagonistic action of glucagon. In fact, a 
study showed that weekly treatment with Dulaglutide was superior to 
placebo in improving glycemic control over 26 weeks among young 
people with type 2 diabetes treated with metformin and/or insulin 
[51].

GLP-1A in T1DM
In T1DM, residual β-cell function is minimal, if not completely 

absent. Therefore, GLP-1A cannot have any effect on the stimulation 
of insulin secretion in these subjects. In addition to glycemic control 
which represents the target of insulin therapy, two other non-
negligible aspects in the management of T1DM concern weight gain 
and the paradoxical increase in glucagon refractory to the action of 
the administered insulin [52]. A study demonstrated better glycemic 
control, weight reduction, a lower insulin daily dose and especially 
a significant reduction in total and postprandial glucagon levels in 
patients with combined therapy insulin-GLP1A [53]. Moreover, other 
Authors showed that postprandial glucagon levels tend to progressively 
increase with the duration of T1DM and correlate positively with 
deterioration of glycemic control and loss of β-cell function [54]. If 
GLP-1 levels followed the rising trend of glucagon while GLP-1 is 
thought to negatively modulate glucagon secretion, there would be 
a difference between the action obtained from physiological levels 
of GLP-1 and pharmacological ones during therapy with GLP-1A. 
In light of these results, a new starting point can be defined for the 
rationale for the use of GLP-1A in association with insulin therapy. 
Also, in a recent trial, Liraglutide appears to exert an inhibitory 
effect on ketogenesis through glucagon reduction [55]. Furthermore, 
another work shows that Liraglutide, not only markedly suppresses the 
post-prandial excursion of glucagon in a dose-dependent manner, but 
it also suppresses fasting plasma FFAs concentrations, and therefore 
ketogenesis, in patients with T1DM [56].

New Challanges

Hyperglucagonemia represents a fundamental pre-requisite for 
the development of all forms of diabetes but also obesity, and it is 
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due to insulin deficiency, glucagon receptor resistance, imbalance of 
incretin secretion, and impaired liver-alpha cell axis. Hepatic steatosis, 
present in almost all obese pediatric patients, could be the main 
responsible for the establishment of glucagon-resistance. Therefore, 
hyperglucagonemia could also be considered a valid marker for the 
development of metabolic diseases in pediatric patients, as useful tool 
in the prevention strategy. Whereas, the challenge in pharmacological 
research is to balance the beneficial effects of glucagon on body weight 
and lipid metabolism with its hyperglycemic effects. Therefore, dual- 
and tri-agonists combining glucagon with incretin hormones have 
been developed and studied as anti-diabetic and anti-obesity therapies 
[57,58]. The GIP/GLP-1-agonist Tirzepatide has been approved by 
FDA for the treatment of T2DM, and according to clinical studies, 
Tirzepatide proved to be more effective than Semaglutide also in 
reducing body weight in patients with obesity [59]. Finally, among the 
therapeutic perspectives, the real challenge is to approach metabolic 
pathologies by trying to broaden the targets of action. What if we 
were only treating part of diabetes by giving insulin and metformin? 
What if we also considered glucagon in the management of diabetic 
ketoacidosis? There are numerous questions still unanswered. 
Shifting the focus of therapy can represent a winning strategy in the 
management of metabolic pathologies and this is what we hope for, 
especially for the pediatric population.
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