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Introduction

In recent years, advanced technology with nanoparticles have 
greatly sparked the interest of the scientific community. Their 
small sizes and tunable functional properties make them appealing 
as unique structures for biomedical applications, ranging from 
bioimaging, biosensing, drug delivery and theranostics. Material 
scientists have focused their research on the synthesis of transition 
metal oxide nanoparticles (TMONPs). Transition metal oxides exhibit 
unique physicochemical properties including catalytic function, 
ferroelectricity, piezoelectricity, magnetism, and supercapacitor 
performance. These oxides are fascinating to work with because their 
electrons interact strongly with each other, giving rise to a range of 
phenomenal effects such as high-temperature superconductivity and 
magnetoresistance. A comprehensive review summarizes different 
methods for synthesizing (TMONPs) as catalysts in oxidation 
reactions, and the unique role of metal oxide substrates in anchoring 
metal atoms for photocatalysis is emphasized. Biosynthesis of these 
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nanoparticles by bacteria, fungi and plants can yield desirable 
crystallinity, diameters and morphologies if all process parameters 
(concentration, pH, temperature, time, and calcination temperature) 
are well controlled. Different TMONPs can be combined with 
other transition metal oxides to form nanocomposites that offer 
multiple synergistic advantages. They represent an important class 
of semiconductors finding applications in various major industries 
from solar energy transformation, magnetic storage media and 
electronic devices to photocatalysis. The development of novel 
electrochemical biosensors using morphologically varied transition 
metal oxides and their composites has highlighted the significance 
of TMONPs as promising electrode modifiers for the fabrication of 
electrochemical and biosensors. Reactivity of the metal oxide-water 
interface can be understood from the viewpoint of coordination 
chemistry, while the reactivity of a metal ion at a nanoparticle 
surface is compared to the reactivity of the same metal ion dissolved 
in an aqueous solution [1-12].
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Nanotechnology is introducing many advantages over 
conventional methods of food processing, extending the shelf life, 
reducing deterioration, maintaining quality, and adding food values. 
Nanoparticles and nanomaterials improve barrier properties, detect 
pathogens, and alert the status of food. They will reduce the wastage 
of post-harvest loss of agriculture and horticulture produces. A 
substantial review has recently been published on the incorporation 
of transition metal oxides in the development of intelligent food nano-
packaging. Peroxides are inorganic chemicals that contain a bivalent 
O-O group. These compounds release nascent oxygen readily and 
their major industrial applications include oxidizing agents, bleaching 
agents, and polymerization initiators. Chemical oxidation is one 
of the environmental site remediation methods that have emerged 
lately as a better alternative to traditional technologies. Nanosized 
oxidizing agents increase the ratio of surface to volume and hence 
the biodegradation speed for contaminants in soil and ground water. 
Sodium peroxide (Na2O2), sodium perborate, and sodium persulfate 
are common inorganic salts that react with water to produce hydrogen 
peroxide (H2O2). Other metal peroxides, such as BaO2, CaO2, CdO2 
and MgO2, are highly stable and they promote the oxidation of organic 
substances only at higher temperatures. BaO2, CaO2, MgO2, TiO2 and 
ZnO2 provide antibacterial applications in biomedicine. Tin peroxide 
(SnO2) transforms to SnO when exposed to orange peel extracts with 
reducing ability. Zinc peroxide (ZnO2) nanoparticles can be employed 
to prepare intelligent nano-packaging for better food preservation if 
they do not leach out from the packaging to the food [13-21].

Zinc Peroxide Nanoparticles

In 2021, zinc oxide and peroxide were the world’s 776th most 
traded product, with a total trade of US$1.87B. The top exporters 
of ZnO2 and ZnO were the Netherlands, Mexico, Canada, United 
States, and Peru. Both ZnO and ZnO2 nanoparticles can be prepared 
from aqueous solutions containing zinc nitrate or formate using UV 
irradiation. When ZnO is treated with H2O2, an interfacial ZnO2 
layer forms to cover the nanoparticle surface. ZnO nanoparticles can 
be obtained by heat treatment of the peroxide above the transition 
temperature of 233°C, up to the decomposition temperature of 473°C. 
The weight loss due to the thermal decomposition of ZnO2 into ZnO 
and O2 at 250°C is considerably larger than the expected theoretical 
value of 16.4% just by oxygen release. ZnO2 is a stronger oxidizing 
agent than ZnO. Decomposition of ZnO2 to ZnO and O2 resulted in 
the decrease of the band gap energy from 3.75 to 3.30 eV [22-28].

ZnO2 nanoparticles were traditionally prepared by peptization 
of Zn(OH)2 with the aid of H2O2 aqueous solution. They could be 
formed by a simple oxidation-hydrolysis-precipitation procedure, 
using zinc acetate as a precursor, hydrogen peroxide as an oxidizer, 
water as a preparation medium for hydrolysis, and polyethylene 
glycol as a stabilizer. ZnO2 nanoparticles can facilely be synthesized 
from zinc acetate and H2O2 using a sol-gel method under ultrasound 
assistance [29-33]. Characterization by scanning electron microscopy 
and energy dispersive X-ray spectroscopy (Figure 1) shows an atomic 
ratio Zn/O of 2.01 and an average particle diameter of 304±5 nm. A 

O K 32.94 66.75 
Zn K 67.06 33.25 
   
Totals 100.00  
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Figure 1: (a, b) Scanning electron microscopy, and (c, d) energy dispersive X-ray spectroscopy of ZnO2 nanoparticles facilely prepared in our lab by following Ramírez et al.’s sol-gel method 
under ultrasound assistance.
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green method based on the reaction between Zn5(CO3)2(OH)6 powder 
and H2O2 in aqueous solution at room temperature can synthesize 
ZnO2 nanoparticles. ZnO2 nanoparticles can be prepared by the laser 
ablation of zinc in 30% H2O2 as another green technique using the 
fundamental wavelength (1064 nm) of a pulsed Nd: YAG laser, at a 
repetition rate of 15 Hz and laser fluence of 22 J/cm2 for an ablation 
time of 10 min. Furthermore, the Leidenfrost dynamics occurring 
in an underwater overheated zone ensures eruption of nanoclusters 
towards a colder region, forming monodisperse nanoclusters of ZnO2. 
Nowadays, ZnO2 nanoparticles are commercially available, either 
bare or coated with an organic ligand shell of polyethylene glycol for 
stable dispersion in water, methanol, ethanol, acetone and dimethyl 
sulfoxide [34-38].

Unique Properties of Zinc Peroxide Nanoparticles

ZnO2 is much more stable in aqueous solutions (as compared to 
calcium and magnesium peroxides) and it retains its peroxide content 
down to pH 6. At lower pH levels, H2O2 release is predictable as its 
dissolution product, Zn2+, is highly soluble. Nanocrystalline ZnO2 
can be passivated against further oxidation by the addition of sub-
stoichiometric amounts of potassium permanganate, which also 
increases the thermal stability of ZnO2 [39,40].

ZnO2 possess unique anti-bacterial, anti-corrosion, anti-fouling, 
and photocatalytic properties that are considered cost effective 
and environment friendly. They have been studied, due to their 
semiconducting and oxidizing properties, for various applications 
in optoelectronics, photocatalysis, sensors, biomedicine, and 
theranostics. Due to their large nonlinear optical susceptibilities, 
which are enhanced by two-photon electronic resonance, metal oxides 
are efficient sources of coherent anti-Stokes Raman Scattering (CARS). 
The FTIR spectrum of ZnO2 nanoparticles shows a characteristic 
absorption peak at 435-445 cm−1; the Raman spectrum shows 
characteristic peaks at 830-840 and 420-440 cm−1. ZnO2 nanoparticles 
exhibit photoluminescence with one strong emission band at 400 nm, 
one very weak emission band at 474 nm, and at 520 nm originating 
from the band edge and the oxygen vacancy. Polyvinyl alcohol/ZnO2 
nano-composite films have been engineered via casting. Their energy 
gaps decrease with increasing ZnO2 concentrations to reach 2.80 eV 
at 2 wt.%, which are promising in anti-ultraviolet, opto-electronic, 
and optical limiting applications. A correlation exists between oxygen 
vacancies and the magnetization for pure ZnO2 nanoparticles at room 
temperature. Coating of 15-20% ZnO2 nanoparticles over graphene 
enhances magnetization more than 30 times due to the exchange 
interaction between localized electron spin moments resulting from 
oxygen vacancies at the surface [41-47].

ZnO2 nanoparticles have reportedly oxidative stress mediated 
toxicity on various mammalian cell lines. Oxygen release from the 
biofunctionalized nanoparticles is tunable according to the solution 
pH. Antimicrobial tests at 37°C on bacterial species exhibiting different 
susceptibility to oxygen have confirmed the antimicrobial activity 
of ZnO2 nanoparticles against Enterococcus faecalis, Aggregatibacter 
actinomycetemcomitans, Porphyromonas gingivalis and Prevotella 
intermedia. Accordingly, ZnO2 showed effective antifungal activities, 
with a minimum inhibitory concentration (MIC) of 16 mg/L against 

Candida albicans. Histopathology assessment has confirmed the role 
of ZnO2 nanoparticles in healing skin wounds. They exhibit angiogenic 
activity, due to onsite production of H2O2, for rapid tissue healing. 
ZnO2 demonstrate antimicrobial, anti-elastase, anti-keratinase, 
and anti-inflammatory properties that are valuable for biomedical 
applications. They also inhibit bacterial biofilm formation and combat 
multi-drug resistant bacteria. A minimum concentration of ZnO2 
nanoparticles of 1 μg/mL inhibits the production of interleukin-1-β 
and interleukin 6 by peripheral blood mononuclear cells in the presence 
of lipopolysaccharides. ZnO2 nanoparticles at a concentration of 2 μg/
mL causes DNA damage in vitro; at a concentration of 5 μg/mL they 
promote protein aggregation and facilitate the production of protein 
complexes that may interfere with normal immune functions [48-54].

Applications of Zinc Peroxide Nanoparticles

Nanosized ZnO2 is an efficient oxidant for the oxidation of 
aromatic alcohols to the corresponding carbonyl compounds 
selectively in excellent yields, using dimethyl carbonate as an 
environmentally benign solvent. ZnO2 nanoparticles reactively adsorb 
chemical warfare agent surrogate of mustard gas, selectively oxidizing 
diethyl sulfide to diethyl sulfoxide and 2-chloroethyl ethyl sulfide to 
hydroxyethyl ethyl sulfide. Crosslinking of conventional/carboxylated 
nitrile rubber with ZnO2 achieved total peroxide decomposition at 
vulcanization temperatures as low as 190-200°C [55-57].

Semiconducting CuO nanoparticles, as a CO2 gas sensitive 
material, can with an organic binder and ZnO2 for improved gas 
sensitive layer quality. The Lewis acid-base reaction between oxide 
oxygen and CO2 has been proposed as sensing mechanism for the 
measurements in dry air, whereas the formation of surface barriers 
between nano-grains due to the reaction with CO2 has been suggested 
for the CO2 response under humid conditions [58].

ZnO2 is a promising adsorbent nanomaterial for the removal of 
Congo red dye from contaminated water. The adsorption capacity is 
208 mg g-1 within 10 min at pH 2-10. The adsorbent has a unique 
property to adjust pH within the 6.5-7.5 range irrespective of the 
acidic or basic nature of water. It is highly efficient even in the absence 
of sunlight to remove Congo red dye from contaminated water down 
to the permissible limits set by the World Health Organization and 
the United States Environmental Protection Agency. Crystal violet 
dye in industrial wastewater can be removed using sodium docusate-
modified ZnO2, attaining >99.5% adsorption efficiency in 5 min at pH 
∼10 as the zeta potential of ZnO2 decreases from −15 mV at pH 3 
to −60 mV at pH 9. The higher negative charge results in stronger 
electrostatic interaction with the dye. Synthetic graphite flakes can be 
treated with 3-mercaptopropionic acid, followed by functionalization 
with ZnO2 nanoparticles, to efficiently remove As(III) and As(V). 
The adsorption data are best fitted with pseudo second order kinetic 
model and Freundlich adsorption isotherm, indicating chemisorption 
and multilayer adsorption on heterogeneous surface respectively. 
ZnO2 nanoparticles, capped with polyvinyl-pyrrolidone to control 
the particle size, is an efficient material for the decontamination of 
cyanide from contaminated water by adsorption at pH 5.8-7.8 within 
15 min [59-62].
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As a catalyst for removal of reactive blue dye, a maximum 
degradation efficiency of 85% was achieved by ZnO2 nanoparticles 
with polyethylene glycol, and 81% without PEG, after 120 min 
of photocatalytic reaction. ZnO2 nanoparticles have excellent 
degradation efficiency of brilliant green dye, achieving 84-86% after 
120 min of photocatalytic reaction at pH 6-7. Eco-friendly carbon 
quantum dots/ZnO2 nanocomposite has been successfully synthesized 
for photocatalysis applications. It has higher efficiency than carbon 
quantum dots/TiO2 for the removal of different dyes and high 
stability under UV-A light. Nitrobenzene photodegradation by ZnO2 
under UV lamps of 254 nm is optimal at pH 2, reaching up to 90% 
degradation in 2 h at 25°C [63-66].

For dental implants the accumulation of anaerobic bacteria is a 
main reason for peri-implant inflammation that can lead to implant 
loss. Decorating ZnO2 by Glc-1P permits their uptake in the gram-
negative oxygen-sensitive bacterial cells. ZnO2 nanoparticles can 
be decorated with glucose 1-phosphate (Glc-1P) due to specific 
interaction of the phosphate function of Glc-1P with the nanoparticle 
surface. The anchored glucose molecules are accessible for specific 
interactions with lectin concanavalin A. Generation of ROS including 
hydrogen peroxide, hydroxyl radical, and peroxide anion can enhance 
the membrane permeability, cell wall damage, internalization of 
nanoparticles, and uptake of toxic dissolved Zn2+ ions. A ZnO2-based 
theranostic nano-agent enhances oxidative damage to cancer cells by 
combining endogenous and exogenous reactive ROS. After uptake 
by cancer cells, the pH-responsive ZnO2 nanoparticles, in addition 
to releasing exogenous H2O2, also provide Zn2+ to facilitate the 
production of endogenous O2·

-and H2O2 from mitochondrial electron 
transport chain, enabling highly effective synergistic tumor therapy 
[67-69].

Zinc Oxide Nanoparticles

ZnO is a white powder that has two main lattice structures: 
hexagonal wurtzite and cubic zincblende. The hexagonal structure is 
commonly found, and both structures are insoluble in water with a 
solubility of 0.16 mg/100 mL at 30°C. The solubility of uncoated ZnO, 
as determined by the Zn2+ concentration in the aqueous solution, 
ranges between 20 and 47 mg/L. The solubility product constant Ksp is 
a useful parameter for calculating the aqueous solubility of sparingly 
soluble compounds. A comparison of dissolution rates shows that the 
ZnO nanoparticles have a higher dissolution rate than the bulk oxide. 
A new methodology for the in-silico assessment of the solubility of 
ZnO based on statistical thermodynamics, combined with density 
functional tight binding theory for the evaluation of the free energy 
exchange during the dissolution process. Complete ionic dissolution 
of ZnO is hindered by the formation of O2− anions in solution, which 
are highly unstable. The dissolution rate will depend critically on 
the matrix with Zn ions and the mechanisms for diffusion or active 
transport of Zn2+ and O2-ions in biological processes. Any mass 
fraction of Zn2+ ions removed or washed away will lead to further 
dissolution and eventually complete solubilization of the particulate 
fraction of ZnO. The fact that zinc-rich foods are mostly animal 
products suggests that vegetarians and vegans may have difficulty 
getting enough zinc in their diet. Zinc supplements are a great way to 

have the recommended levels of zinc in the body for stronger immune 
systems and improved muscle building. They are particularly useful 
for older adults (especially older men), who are more likely to have 
zinc deficiency [70-75].

Unique Properties of Zinc Oxide Nanoparticles

A variety of industries, including the automotive, concrete, 
cosmetic, pharmaceutical and textile, have used ZnO nanoparticles as 
a major material. The annual turnover of ZnO nanoparticles is over 
US$ 900,000/year, and the specific cost of their production is US$20/
kg. Numerous synthetic techniques have been developed to meet 
the increasing demand for ZnO nanoparticles. These alternatives 
offer environmental and financial advantages associated with their 
commercial production. Biological synthesis uses plant extracts or 
microbes as green resources for the preparation of ZnO nanoparticles. 
Considerable investment to improve the performance of diverse 
nanocomposites allows rapid development of novel photocatalytic/
photooxidizing degradation technologies for removing dyes in 
industrial wastewater [76-78].

Nowadays, ZnO nanoparticles continue to be a great attraction 
to researchers in various scientific endeavors based on their unique 
physicochemical properties. The natural bandgap (3.37 eV) and n-type 
conducting behavior of ZnO can be tuned by doping with metals/
metal oxides and non-metals to replace Zn2+ and O2-in the ZnO lattice, 
for various applications (such as solar cells, photocatalysis, medicines, 
light-emitting diodes, laser diodes, chemical and biosensors) owing to 
the direct influence of dopants on their electronic and physiochemical 
properties. A wide range of energy bandgaps (3-4 eV) is attained by 
green synthesis, indicating that ZnO nanoparticles can be employed 
in metal oxide semiconductor-based systems. The effectiveness of 
dye-sensitive solar cells is attributable to improved dye adsorption 
onto the nanoparticle surfaces. By adding ZnO in various amounts 
to a solution of polyvinylidene fluoride in 2-butanone during the 
fabrication process, followed by removing ZnO in an HCl bath once 
the organic solvent is evaporated, porous sensors can be made with 
different piezoelectric chains to control the piezoelectric coefficient. 
ZnO nanoparticles synthesized using the coprecipitation method 
present the best performance in catalysis, biosensing, imaging, drug 
delivery, and pollution absorption owing to their highest purity and 
crystalline phase, large Brunauer-Emmett-Teller surface area (~23 
m2g-1) and pore volume in the mesoporous-macroporous structure 
[79-82].

ZnO nanoparticles have strong antimicrobial activity against 
a broad spectrum of bacteria (P. aeruginosa, E. coli, A. baumannii, 
K. pneumoniae and Staphylococcus aureus) and are effective against 
Hyalomma ticks. However, all fungal strains (P. chrysogenum, A. niger, 
T. citrinoviride and A. fumigatus) are resistant to ZnO nanoparticles. 
ZnO nanoparticles (1.5 mg/L) are protective against the detrimental 
effects of Clostridium perfringes type A infection in aquaculture. Their 
potential mechanisms of action against various kinds of viruses were 
discussed in a comprehensive review. The adoption of novel bio-assisted 
synthesis methodologies tailors the properties of ZnO nanoparticles 
to suit biomedical applications, underscoring their potential in cancer 
treatment towards MCF-7 breast cancer cell lines [83-87].
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Applications of Zinc Oxide Nanoparticles

ZnO is produced synthetically for use as an additive in adhesives, 
antibacterials, baby powder, batteries, cement, ceramics, cigarette 
filters, cosmetics, ferrites, fire retardants, first-aid tapes, foods, glass, 
laser diodes, light emitting diodes, lubricants, ointments, paints, 
pigments, plastics, rubbers, sealants, semiconductors, solar cells, sun 
blocks, and wood products. Traditional uses of ZnO products include 
treating wounds following surgery and applying salves inside the mouth 
to treat ulcers or sores. Over 50% of ZnO is used in the rubber industry 
along with stearic acid for the vulcanization of rubber to produce 
tires, shoe soles, and even hockey pucks. ZnO nanoparticles have 
been added in food-packaging materials to stop food from spoiling. 
For use as binary/ternary composite anodes in lithium-ion batteries, 
ZnO has a higher theoretical capacity (978 mA.h/g) than many other 
transition metal oxides such as CoO (715 mA.h/g), NiO (718 mA.h/g) 
and CuO (674 mA.h/g). ZnO nanoparticles are extensively used in 
healthcare and environmental remediation applications attributable 
to their biodegradability. ZnO possesses unique biological properties 
for various antibacterial, antiinflammation, antitumor, and antiviral) 
applications. Addition of ZnO nanoparticles into crystal violet 
dye induces an alternative photoredox pathway, resulting in more 
generation of reactive oxygen species lethal to bacterial cells. This 
technique could be used to transform a wide range of bactericidal 
surfaces and contribute to maintaining low pathogen levels on hospital 
surfaces related to healthcare-associated infection. Hybrid ZnO-
SiO2 nanoparticles possess favorable characteristics for antifouling 
purposes. Self-cleaning and anti-fouling polymeric membranes 
for wastewater treatment are commercially fabricable with ZnO 
nanocomposites [88-100].

The formation and breaking of transition metal-carbon bonds 
plays a pivotal role in the catalytic oxidation of organic sulfides, 
alcohols, olefins, and alkanes. The textile industry is environment 
unfriendly due to the massive use of dyes and chemicals. Discharge of 
untreated textile wastewaters loaded with dyes not only contaminates 
the soil and water resources but also threatens the public health. 
ZnO nanorods can be used as a photocatalyst to degrade 65% of 
methylene blue in 50 min. Biochar-ZnO composites obtained by 
pyrolysis at 600°C can degrade 90% rhodamine B in 75 min, while 
ZnO can degrade only 38%. ZnO nanoparticles can be doped with 
Ni (3%), through combustion at 550°C, to improve the photocatalytic 
degradation of methylene blue and tetracycline [101-103].

Sodium (15%)-doped ZnO degrades 95% of methylene blue 
under visible light illumination in 180 min, with a rate constant 
of 1.7×10-2 min−1 and tenacious photostability. Green synthesis 
of ZnO nanoparticles is gaining huge attention via eco-friendly 
protocols that reduce the destructive effect of chemical synthesis. 
ZnO nanoparticles synthesized from Synadium grantii leaf extract 
with Cu dopant exhibit superior photocatalytic activity for indigo 
carmine, methylene blue and rhodamine B dyes. Gynostemma plant 
extract can be used in a co-precipitation method to synthesize ZnO 
nanoparticles for the photocatalytic decolorization of malachite 
green dye under UV illumination within 180 min. Biogenic ZnO 
nanoparticles can be synthesized by using Pseudochrobactrum 

sp. C5 for catalytic degradation of dyes in wastewater treatment. 
Valorization of banana peel waste extract as the reducing and capping 
agents produces ZnO nanoparticles that show superior reusability 
and photodegradation efficiency for the removal of hazardous basic 
blue 9, crystal violet and cresol red dyes at pH 12 over irradiation 
time 90 min. Degradation of congo red by orange-peel-extract-
biosynthesized ZnO nanoparticles via photocatalysis can remove 96% 
of the dye Photocatalytic degradation of rhodamine B dye in waste 
water and inhibition of butyrylcholinesterase, acetylcholinesterase 
and α-glycosidase enzymes are afforded by cauliflower-shaped 
ZnO nanoparticles synthesized using Alchemilla vulgaris leaves. 
Maximum photocatalytic degradation of pharmaceutical wastewater 
with ZnO was 40% and with TiO2 is 33% at pH 9, following pseudo-
first-order kinetics. Combined use of TiO2/H2O2 is more effective 
than ZnO and TiO2 alone, achieving 45% degradation. ZnO and 
TiO2 can be used as catalysts for the degradation of dyeing factory 
effluents by the advanced oxidative process under UV irradiation at 
pH 3 for 8 h. Interestingly, a deposit of CdS nanoparticles on ZnO 
nanosheets provides excellent piezocatalytic efficiency for rhodamine 
B degradation under ultrasonic vibration. The nanocomposite of ZnO 
with porous hydroxyapatite (prepared from phosphate rock) improves 
the photodegradation of antibiotics in water and traps the by-products. 
An artificial neural network model can estimate the effect of different 
variables on AB113 dye removing decolorizing acid blue dye from 
textile wastewater in a sonophotocatalytic process. Reaction time, pH, 
ZnO dosage, ultrasonic power and persulfate dosage are optimized 
for maximum dye removal. After photocatalysis, if the treated water is 
discharged to the surface water along with the catalyst nanoparticles 
and degradation products, a resulting toxicity exists in the medium 
that can influence the lipid peroxidation and reduced glutathione 
in the aquatic vertebrates. Hence filtration is recommended before 
discharging, for separation of the catalyst nanoparticles. However, the 
filtration of nanoparticles from the treated water is costly and might 
outweigh the savings of energy [104-116].

Toxicology of ZnO Nanoparticles

Increasing production and application of transition metal oxide 
nanoparticles has raised concerns in regard to their environmental 
accumulation and toxicity in natural ecosystems. Nanoparticles 
are extensively studied for their chemical toxicology in aquatic 
microorganisms, agricultural products, fish, wildlife and humans. The 
uptake and accumulation of ZnO nanoparticles by aquatic organisms 
have considered the release of Zn2+ ions as well as the toxic mechanisms 
shared with other nanoparticles such as immunotoxicity, inflammation, 
lysosomal/mitochondrial damage, oxidative stress, programmed cell 
death, and redox activity. The growing usage of ZnO nanoparticles 
increases their release in municipal wastewater treatment plants. 
At 50 mg/L ZnO nanoparticles, both the granular activated sludge 
performance and the extracellular polymeric substances content 
are significantly reduced. This leads to decreases in the activities 
of ammonia monooxygenase and nitrate reductase. In addition, 
ZnO nanoparticles disrupt the cell membrane integrity and lead to 
bacterial cell death via intracellular ROS generation. After exposure 
to the nanoparticles, the bacterial community composition shifts to be 
dominated by Gram-positive bacteria. Antibacterial activity of ZnO 
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nanoparticles is more pronounced with Gram-positive than Gram-
negative bacteria. ZnO nanoparticles are biocompatible and effective as 
a food preservative against Salmonella typhi, Klebsiella pneumoniae and 
Shigella flexneri. They demonstrated significant antibacterial effects on 
various pathogenic bacteria in terms of zone-of-inhibition measured 
by the disc-diffusion method. When treated with ZnO nanoparticles 
(100-300 mg/L), significant reductions in marine microalgae C. vulgaris 
viable cells, LDH level, and non-enzymatic antioxidant glutathione 
are noticed while the activity of antioxidant enzyme superoxide 
dismutase and the level of lipid peroxidation significantly increase. 
ZnO nanoparticles possess antibacterial and antioxidant properties 
towards the remediation of hospital wastewater; the ones fabricated 
using Eriobotrya japonica leaves extract exhibit DPPH scavenging 
activity and are highly active against S. aureus, P. multocida, E. coli 
and B. subtilis strains. Redox imbalance, lignification and cell death 
cause reduction of root growth in wheat seedlings exposed to ZnO 
nanoparticles. Dietary exposure of carp to ZnO nanoparticles increases 
the aspartate aminotransferase activity significantly and decreases 
the alanine transferase activity significantly. ZnO nanoparticles act 
as a potent antidiabetic agent and severely elicit oxidative stress 
particularly at higher doses in diabetic rats (10 mg/kg). Initial exposure 
of human bronchial and pancreatic epithelial cells to oxidative stress 
sensitizes their subsequent response to cytotoxic challenge with ZnO 
nanoparticles. As in vitro model species human erythrocytes can be 
used to evaluate cytotoxicity, and human lymphocytes can be used 
for genotoxic studies. ZnO and TiO2 nanoparticles result in 65% and 
52% hemolysis at 250 ppm respectively, indicating cytotoxicity to 
human red blood cells. Both nanoparticles were found to generate 
ROS concomitant with depletion of glutathione and glutathione 
S-transferase levels. ZnO nanoparticles are significantly more 
genotoxic than TiO2 nanoparticles at concentrations higher than 250 
ppm. The nanoparticles preferentially kill cancerous cells over normal 
human cells. They enhance ultrasound-induced lipid peroxidation 
in the liposomal membrane. Two mechanisms underly the toxicity 
of ZnO nanoparticles: (i) generation of ROS and (ii) induction of 
apoptosis. The chemical toxicology of ZnO nanoparticles in adult male 
Wistar rats were investigated. All levels of zinc oxide nanoparticles 
had a significant impact on sperm quality and quantity. Significant 
toxicity effects of ZnO nanoparticles appeared at concentrations above 
50 mg/kg body weight of animals. 200 mg/kg body weight resulted in 
increased total oxidant status and decreased total antioxidant capacity 
significantly. On the contrary, dietary supplementation of Nile tilapia 
with Se nanoparticles and ZnO nanoparticles induces synergistic 
effects that improve growth performance, blood health, and intestinal 
histomorphology. Seed priming with ZnO nanoparticles demonstrates 
beneficial effects of mitigating the phytotoxicity induced by Co stress 
in maize, significantly improving the plant growth, biomass, and 
photosynthetic machinery. Freshwater fish O. mossambicus fed with a 
supplemented diet of ZnO and Se nanoparticles raises the antioxidant 
response, boosts the immunity, and reduces the chance of getting 
infected by A. Hydrophilia. The entrance of ZnO or ZnS nanoparticles 
into freshwater systems may significantly impact the sedimentary 
microbial community structure and nitrogen cycling. Furthermore, 
they showed a strong anti-termite activity against Heterotermes indicola 
with a 100% mortality rate in 24 h [117-136].

Biosensors Incorporating Zinc Oxide Nanoparticles

Among all the optical biosensing systems, ZnO nanoparticles 
formed directly atop 3-aminopropyl triethoxysilane-treated Si 
substrates are more adhesive. Smaller particle sizes of ZnO will increase 
the fluorescence emission, eliminate several emission peaks, yield 
higher fluorescence quantum efficiency, and require lower excitation 
energy for fluorescence sensing. N-doped ZnO nanoparticles exhibit 
fluorescence emission at 385 nm (corresponding to the exciton 
absorption band) under excitation of 340 nm, responding with high 
selectivity and a detection limit of 4.9 μM for urea in blood serum. 
Self-assembly of diphenylalanine nanostructures in the presence of 
ZnO nanoparticles display distinctive luminescent emission at 550 
nm that affords sensitive detection of trypsin down to 0.1 ng mL−1. 
As a surface-enhanced Raman scattering substrate, ZnO tips can be 
decorated with gold nanoparticles to take advantage of the synergistic 
effect. Assay for nicotine demonstrates high sensitivity, reaching a lower 
detection limit of 8.9×10−12 mol/L and offering a linear dynamic range 
of 10−10-10−6 mol/L. A localized plasmon-based fiber optic sensor can 
be immobilized with ZnO nanoparticles along with Au nanoparticles 
for the detection of p-cresol (a water pollutant) as low as 57 μM. A 
field effect transistor device consisting of ZnO nanoparticles and 
glutathione-S-transferase in the composite channel can successfully 
detect and quantifies glutathione in solution and in cancerous cells. 
The glucose content in food samples can be determined using ZnO 
nanoparticles, with a correlation coefficient of 0.9812 at 3.5 mM-27.8 
mM concentrations [137-143].

A novel electrochemical sensor made by drop casting zinc oxide 
nanoparticles and electropolymerizing glutamic acid can detect 
sodium dodecyl sulfate with excellent selectivity via molecular 
imprinting. ZnO was overlaid on the interdigitated electrode of an 
electrochemical DNA biosensor to detect sequence complementation 
from Ganoderma boninense. ZnO nanoparticles prove to be excellent 
for doping carbon dots in electrochemical biosensor applications. 
Chemical vapor deposition of ZnO nanoparticles on an aluminum 
foil working electrode successfully sensed cysteine electrochemically. 
Smartphones can be combined with screen-printed electrodes or 
interdigital electrodes for in-situ electrochemical detection. The 
electrodes are often modified with biomaterials, chemical materials, 
and nanomaterials (such as ZnO) for biosensing to monitor ascorbic 
acid, dopamine, glucose, levodopa, and uric acid in point-of-care 
testing. Aluminum doping can be attained by radio frequency 
magnetron sputtering of ZnO nanoparticles deposited on a glass 
substrate for biosensor applications. Four different H2O2 biosensors 
have been designed using ZnO nanoparticles, multiwalled carbon 
nanotubes, Prussian blue, ionic liquid and horseradish peroxidase. 
The best analytical performance offers a linear dynamic range of 
9.99×10-8‒7.55×10-4 M, detection limit of 1.37×10-8 M, and sensitivity 
of 17.00 µA mM-1. A laser scribed graphene-ZnFe2O4 electrochemical 
aptasensor for acute myocardial infarction screening has been 
developed for detecting the cardiac troponin-I biomarker, with a 
limit of detection of 0.001 ng/mL and a sensitivity of 19.3 µA/(ng/
mL). The Ag-ZnO-graphene oxide/glassy carbon electrode exhibits 
high sensitivity, detection limit of 0.02 μM, and fast response within 
3 s owing to the efficient oxidation of diclofenac sodium at 0.25 
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V. Trimetallic Ni/Ag/Zn oxide composite-modified glass carbon 
electrode has good sensor sensitivity of 0.96 μA/μM cm2 and 
detection limit of 0.3 μM for dopamine. ZnO-reduced graphene 
oxide-Au nanoparticles can modify a screen-printed electrode for fast 
electrochemical detection of dopamine in biological samples. A uric 
acid biosensor was constructed with nafion/uricase/ZnO nanorods-
ZnO nanoparticles on a fluorine-doped tin oxide electrode. Differential 
pulse voltammetry demonstrated linearity over a wide concentration 
range (0.01-1.5 mM) with a high sensitivity (345 μA mM−1cm−2) and 
low limit of detection (2.5 μM). A glassy carbon electrode modified 
with carbon nanotubes, cytochrome C and ZnO nanoparticles has 
good sensitivity for the detection of streptomycin in pharmaceutical 
samples. The highly sensitive interface of penicillinase@CHIT/PtNP-
ZnO/ZnHCF/FTO electrode shows a linear response and good limit of 
detection (0.1 μM) in antibiotics in forensic samples. Biosensors based 
on ZnO and NiO nanostructures decorated with Au nanoparticles 
have opened the doors to detect volatile organic compounds using 
electrochemical methods. Biomass carbon derived from cassava 

and its composites with ZnO nanoparticles can be synthesized for 
biosensing due to their low cost and resource availability [144-159]. 
In our lab, screen-printed electrodes are modified by a deposit of 
ZnO nanoparticles from aqueous suspension onto the graphite 
working electrode surface. After drying, a sample solution containing 
sodium metabisulfite analyte in 1 M KCl can be placed on top for 
chronoamperometry using the Homianze μEA 160C electrochemical 
analyzer. A typical current-time curve is obtained as shown in Figure 
2a, which is ready for data analysis in accordance with the Cottrell 
equation as shown in Figure 2b.

Self-cleaning and Anti-fouling Polymeric Membranes for 
Wastewater Treatment and Analytical Separations

A recent trend in nanotechnology shows the application of 
nano-based materials, such as nano-adsorbents, nano-metals, 
nano-membranes, and photocatalysts, in water treatment processes. 
Nanomaterials typically have high reactivity and a high degree of 
functionalization, large specific surface area, and size-dependent 
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Figure 2: (a) Screen shot of current-time curve obtained in our lab from sodium metabisulfite with ZnO nanoparticles deposited on graphite electrode. (b) Plot of current vs. inverse square 
root of time for Cottrell analysis.
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properties which makes them suitable for applications in wastewater 
treatment and for water purification. Nanostructured catalytic 
membranes, nanosorbents and nanophotocatalyst-based approaches 
to remove pollutants from wastewater are eco-friendly and efficient, 
but they require more energy and more investment in order to purify 
the wastewater. Current and potential applications of nanoparticles 
and nanotechnologies in wastewater treatment as well as challenges 
have been reviewed on the basis of bibliometric results [160-165]. 
Self-cleaning surfaces have attracted significant attention in both the 
scientific and industrial communities [166]. In the past decade, transition 
metal oxide nanoparticles have extensively been incorporated with 
polymeric membranes for water treatment. Special emphasis is given 
here to their anti-fouling and self-cleaning properties when used also 
in the preparation of wastewater samples before chemical composition 
analysis. Various forms of copper, titanium dioxide and zinc 
peroxide were tested against microbial fouling and microbiologically 
influenced corrosion. Their incorporation into polyethylene (high 
density) and fiber-reinforced plastic provides surface protection. 
Wastewater treatment is currently a crucial topic worldwide due to 
global human population growth (83 million annually), industrial 
downstream contamination, and weathering degradation of polymers 
[167-170]. Various water treatment techniques are being advanced 
due to the rising concern of drinking water scarcity and safety. Besides 
conventional water treatments, the pressure-driven water purification 
technology has attracted attention due to its efficiency and received 
substantial applications. Pressure-driven membranes can be classified 
into microfiltration, ultrafiltration, nanofiltration, and reverse-
osmosis. These membranes are used to separate ions, macromolecules, 
suspended particles and nanomaterials from water. Organic polymeric 
membranes are extensively used for commercial purposes due to 
their excellent physical, chemical, and mechanical characteristics. 
However, membrane fouling occurs due to their hydrophobic nature 
plus bacterial accumulation and is limiting their sustained operation 
over time. Regarding membrane fouling, a combination of polymer 
and nanoparticles is suggested to be a practical strategy for enhancing 
membrane hydrophilicity. Incorporating nanoparticles into polymeric 
membranes is becoming a trend in membrane technology. Polymers 
and metal oxides are becoming popular membrane filtration materials 
for wastewater treatment due to their surface functionality, large 
surface area, and unique optical/paramagnetic properties. Under 
visible light conditions, the polymer-metal oxide nanocomposite 
membrane affords superior photodegradation activity toward organic 
pollutants. Transition metal oxides have been evaluated by many 
researchers during the last decade for wastewater reclamation, as 
self-cleaning and anti-fouling agents, to utilize their surface mobility, 
magnetic and optical properties. Recently, a review on polymer 
nanocomposite membranes based on metal oxide nanoparticles was 
published in the field of ultrafiltration membrane technology [171-
194].

ZnO nanoparticles have been extensively used by scientists and 
researchers, known to be inorganic, hydrophilic, low-cost, and green 
(environment-friendly) material. Fluoride contamination of water is a 
serious problem in the world, and zinc oxide nanoparticles are the best 
adsorbent for the removal of fluoride from water and wastewater, with 

an adsorption capacity of 100 mg/g. In wastewater treatment processes, 
ZnO nanoparticles exert a negative impact on the sludge flocculation 
performance but do not significantly impact the sludge sedimentation 
behavior. A decrease of the tyrosine protein-like substance level is 
probably the key reason for the decreased ζ potential in the loosely 
bound extracellular polymeric substances, which eventually induces 
a decline of the sludge flocculation performance under the ZnO 
stress. A novel deflocculant ZnO/chitosan nanocomposite film in 
disperser pretreatment enhances the energy efficiency of anaerobic 
digestion by achieving 99% solubilization of organics. In addition 
to the anti-fouling performance, ZnO nanoparticles also provide 
photocatalytic self-cleaning ability to the polymeric membranes. 
Hence, ZnO-incorporated composite membranes were considered an 
emerging topic in membrane technology. Modification of polyvinyl 
chloride membrane using ZnO nanoparticles is very effective for 
municipal wastewater treatment in the presence of ferric chloride 
coagulant. The nanocomposite membrane did not adsorb the sludge 
inside the pores, hence substantially limiting the membrane fouling. 
Polyvinylidene fluoride membrane with high hydrophilicity was 
reported to be developed through the conglomeration of ZnO and 
graphene oxide. Anti-fouling properties, porosity, water flux and 
wettability were improved to attain a stable effluent quality (0.6 
NTU). Combination of graphene oxide and ZnO nanoparticles on 
polysulfone membrane surface improves the membrane performances 
to treat petroleum refinery wastewater in terms of higher porosity, 
increased hydrophilicity, better mechanical strength, reduced water 
contact angle, increased water uptake ability, higher permeate 
flux, rejection of total dissolved solids, and improved antifouling 
properties. Unfortunately, no sustainable membrane systems are yet 
fully established due to their huge energy requirements for partial 
removal or degradation of trace organic compounds. Impregnation 
of ZnO-graphene also reduces polyethersulfone membrane-solute 
and membrane-foulant hydrophobic interactions. ZnO incorporation 
enhances the hydrophilicity and improves the anti-fouling property 
of polyether sulfone membranes. A mean pore size of 0.64 nm and 
good humic acid rejection make the hybrid membrane well suited 
for nanofiltration in wastewater treatment and water reclamation. 
Multifunctional nanofibrous membranes with sunlight-driven self-
cleaning performance for complex oily wastewater remediation can 
be constructed with an Ag/ZnO layer on the porous polyacrylonitrile 
nanofiber substrate. The membranes demonstrate excellent 
mechanical strength, superhydrophilic (water contact angle = 0°), 
underwater superoleophobic (contact angle = 154°) properties, high 
permeation flux (>619 Lm-2h-1) and separation efficiency (>99.7%) for 
various oil-in-water emulsions [195-204].

The effect of photoactive semiconductor catalyst (TiO2 and 
ZnO) on the anti-fouling and self-cleaning properties of polyether 
sulfone composite membranes (14% by weight) was studied with 
different concentrations of graphene oxide. The hydrophilicity of 
composite membranes improved as compared to neat membrane; 
however, graphene oxide-TiO2 functionalized membranes showed 
the lowest flux. Incorporation of CuO nanoparticles in polymeric 
membranes for water treatment is a potential solution for biofouling 
formation. Promising results have been reported for antibacterial/
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antifouling effects, increased hydrophilicity, water flux improvement, 
contaminant rejection capacity, structural membrane parameters, 
and reduction of concentration polarization. TiO2 nanoparticles 
have been added to improve the self-cleaning and anti-fouling ability 
of ultrafiltration polymer membranes through their photocatalytic 
activity. Immobilization of TiO2 nanoparticles on membrane surfaces 
was investigated to reduce organic fouling effects in a bioreactor 
by increasing the membrane hydrophilicity. Cajanus cajan seed 
extract and carbon nanoparticles reformed the hydrophobic PVDF 
membrane to hydrophilic. Introduction of TiO2 (0.02% by weight) 
into the membrane rendered it bi-functional, thus achieving 
85% rejection of Cr(VI) and 92% reduction to Cr(III) in tannery 
wastewater. Ag2O, Fe2O3 and ZrO2 nanoparticles can be incorporated 
to improve the performance of polymeric filtration membranes due to 
their effects on permeability, selectivity, hydrophilicity, conductivity, 
mechanical strength, thermal stability, antiviral, and antibacterial 
properties. However, they might cause membrane deterioration. 
Thus, careful selection is required to choose the best composition of 
metal oxide nanoparticles for individual polymeric membranes. The 
advantages and disadvantages of Ag2O, CuO, Fe2O3, TiO2, ZnO and 
ZrO2-incorporated polymeric membranes for water purification have 
been compared in a new review. Their characteristics (antibacterial 
property, anti-viral property, conductivity, contaminants rejection, 
flux permeation, hydrophilicity, mechanical strength, permeability, 
surface charge, and thermal stability as shown in Table 1) can help 
decide on the best modification towards achieving sustainable and 
cost-effective treatment operations. Bimetallic transition metal oxide 
nanoparticles have attracted many researchers due to their salient 
features and characteristics over mono metallic oxide nanoparticles. 
PES ultrafiltration membranes were fabricated using the phase 
inversion technique (most commonly used technique to fabricate 
polymeric porous membranes with a large form of structure) with 
a composite of Fe2O3-Mn2O3 nanoparticles as modifier. Those 
membranes showed an excellent porosity (74%), high water flux (398 
L/m2h), and better antifouling ability. Protein-based filtration tests 
showed an improved flux recovery ratio in protein separation and 
water treatment applications [205-214].

Fabrication of transition metal oxide nanoparticles-modified 
polymeric membranes to make them operation-sustainable cost-
efficient is challenging. Transition metal oxide nanoparticles have many 
interesting functional properties. However, integrating nanoparticles 
into a membrane remains a challenge. Atomic layer deposition and 
sequential infiltration synthesis were explored for the modification of 
polymeric membranes and fabrication of novel mesoporous structures. 
Fouling is a major problem that hinders the operation of membrane 
filtration processes. Bio-fouling causes performance degradation and 
elevates energy consumption due to blockage of membrane pores. In 
addition, it increases the frequency of membrane cleaning and reduces 
the membrane life span, thereby leading to higher maintenance and 
operation costs. Antibacterial membranes are considered an attractive 
strategy to retard biofouling. ZnO is reported to be useful as an 
anti-fouling agent in polymeric nanofiltration and reverse-osmosis 
membranes. Instead of ZnO, ZnO2 nanoparticles can be incorporated 
to make nanofiltration and reverse-osmosis polymeric membranes for 
better retardation of fouling since ZnO2 is a stronger oxidizing agent 
than ZnO and can produce free radicals and other reactive oxygen 
species to inhibit growth of microorganisms. The operating temperature 
of nanofiltration and reverse-osmosis is typically within 25-65°C, which 
is far below the transition temperature (233°C) of ZnO2. Hence, ZnO2 
nanoparticles embedded in the polymeric membrane are completely 
stable during wastewater treatment. ZnO2 has photocatalytic self-
cleaning property that would make it a strong modifier over ZnO in the 
fabrication of polymeric membranes. Importantly, these membranes can 
greatly facilitate the preparation of samples for instrumental analysis 
of emerging contaminants by removing microplastics (plastic particles 
smaller than 5 mm) that exist in wastewater and marine environments, 
including pharmaceuticals, personal care products, perfluoroalkyl 
substances, organophosphate flame retardants, illicit drugs, and 
isoprostanes in wastewater as biomarkers of oxidative stress during 
COVID-19 pandemic. A complete summary of recent advances and 
latest studies in the fabrication, modification, and industrial application 
of ZnO photocatalysts is available for further reading. Black TiO2 
nanotube array can be employed as both photocatalyst and electrocatalyst 
to degrade dissolved organic matter in coking wastewater [215-227].

Transition Metal Oxides Polymeric Membrane Advantages Limitations

ZnO Polysulfone, polyurethane, 
polyvinylidene difluoride

Antibacterial, anti-corrosion, anti-fouling, environment-friendly, 
hydrophilic, low-cost, mechanical strength, self-cleaning 
(photocatalytic activity).

Not stable (photocatalytic property), mildly toxic.

TiO2

Antibacterial, anti-corrosion, anti-fouling, hydrophilic self-
cleaning (photocatalytic activity).

High doses may induce cytotoxicity, not stable (photocatalytic 
property). 

Fe2O3

Abundantly available, can remove heavy metals, magnetic 
properties, mechanical strength, non-toxic. Nanoparticles tend to agglomerate easily.

CuO Antibacterial, anti-corrosion, anti-fouling, compound rejection 
capacity, hydrophilic, improving water flux, mechanical strength. 

Low-quality nanoparticles are produced via physical synthesis, 
toxic chemicals are used if produced through chemical synthesis. 

Ag2O
Pressure retarded osmosis 
membranes

Almost non-toxic, anti-fouling, antimicrobial, resistant to 
corrosion, stable. Membranes are sensitive to nanoparticle concentration.

ZrO2 Novel membranes Capable of treating saline water, high-temperature stability, high 
water retention capacity. Fouling susceptibility, expensive raw materials. 

Fe2O3–Mn2O3 Polyether sulfone Antifouling, minimal irreversible fouling, excellent water flux, 
improved recovery for protein separation. Agglomeration of nanoparticles. 

TiO2-ZnO composite 
membrane

Increased hydrophilicity, anti-fouling, self-cleaning properties, 
photocatalytic activity. Low flux. 

Table 1: Transition metal oxide nanoparticles-incorporated polymeric membranes.
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Analytical Methods for Transition Metal Oxide Nanoparticles

New developments have recently been reported concerning 
the chemical analysis of transition metal oxide nanoparticles in 
environmental water due to their biochemical toxicity. A unifying 
methodology for the selective detection of transition metal oxide 
nanoparticles in water, as well as sensitive determination of 
environmentally toxic and biochemically active contaminants that are 
bound on them, is urgently needed. In our lab, new analytical methods 
have undergone intensive development in the last ten years with a 
focus on capillary electrophoresis with UV and molecular fluorescence 
detection (Figure 3). The toxic effects of these emerging contaminants 
have already been verified by Health Canada and Environment 
Canada using bioassays. The methodology under intensive 
development in our research lab begins with a sample treatment step 
that encapsulates all waterborne nanoparticles/nanomaterials into 
lecithin liposomes. Centrifugation concentrates the loaded liposomes, 
and the supernatant water is withdrawn for instrumental analysis by 
liquid chromatography with detection by tandem mass spectrometry. 
Next a surfactant disintegrates the liposomes and isolates lecithin from 
the nanoparticles. Contaminants are desorbed from the nanoparticle 
surfaces using coordination chemistry, biochemical interaction, 
laser photo/photothermal chemistry, aerosol nebulization, and 
electrospray ionization. The desorbed contaminants can be analyzed, 
either immediately or after separation by capillary electrophoretic/
gel filtration/liquid chromatography, by spectrofluorometric and 
mass spectrometric detection. Optical incoherent scattering and 
electrochemical chemistry can be adapted to detect the nanoparticles 
and desorbed contaminants at trace to ultratrace levels [228-238].

Transition metal oxide nanoparticles are increasingly used 
as a solid carrier in the formulation of numerous drug products. 
They end up in waste streams, consequently infiltrating the 
aquatic environments and drinking water resources. Detection of 
nanoparticles in wastewater requires more advanced analytical 
methods than conventional water analysis, to prevent the ecosystem 
of plants and animals from unintended exposure to the released 

pharmaceuticals. Determination of nanoparticles in drinking water has 
important implications for protecting the public health sustainability. 
Unfortunately, many emerging contaminants are not yet stipulated 
in water quality regulations due to a lack of monitoring technology. 
Hence, there is an urgent need to develop new analytical methods 
that can monitor emerging contaminants in water resources. The 
interplay of nanoparticles, environmental pollution, and health risks 
is key to all industrial, environmental, and drinking water treatment 
regulations. A unifying analytical methodology will help scientists 
and engineers strengthen their control of nanoparticles in freshwater 
sources for drinking water treatment plants. New endeavors must 
challenge the traditional notion that environmental toxicological 
events involve only dissolved contaminants. Rather, environmental 
toxicology can involve a complex assortment of nanoparticles and 
associated contaminants whose combined effects on biological and 
mammalian cells are continuously evolving. The precise toxico-
pathogenic effects of ZnO nanoparticles on the cardiovascular system 
under normal and cardiovascular disease risk factor milieu include 
down regulation of vascular development and elevation of oxidative 
stress in the heart tissue. Both endothelial nitric oxide generation and 
cardiac Ca2+-ATPase activity are significantly suppressed; the cardiac 
mitochondrial swelling is enhanced [239].

Wastewater Analysis

The nanoparticles released from different nanomaterials used in 
our household and industrial commodities find their way through 
waste disposal routes into the wastewater treatment facilities and 
end up in wastewater sludge. Further escape of these nanoparticles 
into the effluent will contaminate the aquatic and soil environment. 
Polyacrylic acid nanomembranes can be used as nano-filters to isolate 
and remove Ag and TiO2 nanoparticles in aqueous environmental 
samples using pressure-driven flow, with a filtration efficiency of 
>99%. The phytoremediation potential of Myriophyllum spicatum L. 
for removal of ZnO nanoparticles in tap water ranges between 29% 
and 70%, and slightly higher in pond water. Wastewater treatment 
plants are a primary source of many contaminants to the environment. 

Figure 3: Development of new analytical methods for transition metal oxide nanoparticles in our lab.
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Processing complex mixtures of waste, they can result in the continuous 
discharge of bioactive and endogenous compounds into sensitive 
aquatic ecosystems. Wastewater analysis has been demonstrated to be 
a cumulative approach for assessing the overall patterns of alcohol, 
drugs, tobacco and xenobiotic use by a population at the community 
level. Hospital wastewater, for one, is regarded as a very important 
source of fluoroquinolone antibiotics (ciprofloxacin, norfloxacin, and 
ofloxacin) in the aquatic environment. The development of analytical 
methods is crucial for the detection of oxidative stress biomarkers in 
wastewater, using ultra-high-performance liquid chromatography 
coupled with tandem mass spectrometry and solid phase extraction. 
Mixed liquor can be collected from the secondary aeration tank while 
effluent wastewater is collected after the secondary settling tank in 
a wastewater treatment plant. Mixed liquor is the wastewater which 
leaves the aeration tank after biological treatment before going into 
the secondary settling tank for the suspended solids to sediment, 
while effluent wastewater is the ultimate treated wastewater which is 
discharged to the river from the treatment plant. Obviously, mixed 
liquor has much higher levels of suspended solids and relatively 
higher dissolved carbon content compared to effluent wastewater. 
Nanoparticles from thirteen different elements were determined, 
throughout the full-scale wastewater treatment process, by using 
single particle inductively coupled plasma mass spectrometry. 
Samples of the influent, post-primary treatment, effluent of the 
activated sludge process, as well as reclaimed water were analyzed. The 
incidence of metal-based nanoparticles decreases significantly after 
the conventional wastewater treatment train, and they are smaller 
in the effluent (<180 nm) than in the influent (<300 nm). However, 
anaerobic digesters store high nanoparticle concentrations. Hence, the 
disposal of sludge needs to take this into account to evaluate the risk of 
nanoparticles release to the environment [240-248].

The potential use of 8-iso-PGF2α as a sewage biomarker for 
assessing the status of community health was investigated by liquid 
chromatography-high resolution mass spectrometry coupled to 
immunoaffinity clean-up and β-glucuronidase treatment. Urinary 
excretion provides a mechanism for the entry of isoprostanes to 
wastewater treatment plants and subsequently the wider environment, 
where they may initiate a cycle of oxidative stress in aquatic biota. 
Additional isoprostanes may be produced within these organisms, 
further perpetuating this cycle of toxicity. An analytical method for 
their detection in wastewater, based on solid phase extraction and gas 
chromatography mass spectroscopy, involves a deconjugation treatment 
with -glucuronidase to increase the concentration of isoprostanes 
available for detection. The low ng/L range of concentrations of human 
metabolic biomarkers and the complex matrix composition pose 
bioanalytical challenges related to sample preparation, detection and 
quantification. A sensitive liquid chromatography-mass spectrometry 
method for the detection and analysis of opioid biomarkers has been 
validated according to the European Medicines Agency guidelines; 
Oasis HLB cartridges are useful for sample concentration. Ion pairing 
liquid chromatography with alkanesulfonates coupled to tandem 
mass spectrometry is valid for the analysis of aminoglycosides 
(veterinary antibiotics) in wastewater samples after addition of the 
ion paring salt directly into the raw or treated wastewater samples. 

Surface-enhanced Raman spectroscopy is good for the detection of 
methamphetamine based upon the assembly of Au@Ag core-shell 
nanoparticles on a disposable glassy nanofibrous electrospun paper 
matrix that gives strong scattering signals. Microplastics are generated 
while polishing eyeglass lenses and a huge amount of nanoplastics (<1 
µm) passes through the conventional wastewater treatment process 
in considerable amounts. Microplastics (with adsorbed heavy metals) 
can be quantified in the wastewater by mass balance measurements 
using membrane filtration with polyaluminum chloride coagulation. 
The transport of nanoparticles in various wastewater treatment 
processes is fully discussed in another review [249-255].

Air Pollution Remediation and Quality Monitoring

One of the most favorable environmental applications of 
nanotechnology has been in air pollution remediation in which 
different nanomaterials are used. Nanoparticles have initiated the 
advancement in new and low-cost techniques for environmental 
pollution control including air pollution. Metal oxide nanofibers 
have demonstrated to be effective for air pollution remediation in the 
form of filter, catalyst, catalyst support, and photocatalyst. Fibrous 
metal oxide has several advantages including surface area, mechanic 
strength, chemical stability, thermal stability, and photocatalytic 
ability. In the field of selective reduction of nitrogen oxide, a catalyst 
with low cost, low toxicity, high activity, and good selectivity for N2 is 
needed to replace the high-cost and high-toxicity vanadium catalyst. 
Low-cost spinels MFe2O4 (M = Cu, Mn, and Zn) can be synthesized 
for this application, and MnFe2O4 exhibits the best activity (99.9%) 
and selectivity (95.7%) at 100°C [256-258].

Nanocomposites have distinctive physical and chemical 
properties that result in their use in the construction industry as 
innovative materials. Addition of nanoparticles can bring many 
important properties to the bulk construction and insulation 
materials. Unfortunately, release of ultrafine dust to the air 
environment has harmful impacts on human health. Nanoparticles 
can enter the human body through the skin, inhalation, and 
ingestion. Exposure to nanoparticles can cause serious respiratory, 
cardiovascular, skin, and nerve related diseases. It can pass through 
various mammalian membranes, or be absorbed in them, to cause 
various inflammatory reactions and fibrosis. Pneumoconiosis refers 
to a class of interstitial lung diseases caused by the inhalation of 
airborne dust and fibers. Engineered nanoparticles, owing to their 
high reactivity, can initiate inflammatory responses that trigger 
metastasis. Human exposure to nanoparticles can cause various 
health implications such as DNA damage and cell death. A global 
regulatory policy needs to be framed to assess the toxicity, risk and 
approval of nanoparticles used in the construction industry. The 
current OSHA standard for ZnO fume is 5 mg/m3 of air averaged 
over an eight-hour work shift. NIOSH recommends that the 
permissible exposure limit be changed to 5 mg/m3 averaged over 
a work shift of up to 10 hours per day, 40 hours per week, with a 
short-term exposure limit of 10 mg/m3 averaged over a 15-minute 
period. It would be scientifically interesting to investigate the 
percutaneous absorption of transition metal oxide nanoparticles 
following exposure to road dust powder [259-264].
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Semiconducting metal oxide gas sensors have been developed 
for environmental gases including CO2, O2, O3 and NH3; highly toxic 
gases including CO, H2S and NO2; combustible gases such as CH4, H2, 
and liquefied petroleum gas; and volatile organic compound gases. 
Nanomaterial enabled sensors are applied for the detection of harmful 
gases such as H2S, SO2, and NO2 . An ultrafast sensor has been developed 
for trace-level detection of NH3 gas using ZnO nanoparticles, with 
ultra-fast response (5 sec) and recovery time (8 sec) at 5 ppm. Dopants 
can enhance the performance of semiconductor metal oxides for gas 
sensing applications by changing their microstructure morphology, 
activation energy, electronic structure, and band gap of the metal 
oxides. In some cases, dopants create defects in semiconductor metal 
oxides by generating oxygen vacancy or by forming solid solutions. To 
date, very little is known about the magnitude, patterns, and associated 
risks of human exposure to microplastics, particularly in the indoor 
environment. This is a significant research gap given that people spend 
most of their time indoors, which is exacerbated over the past year by 
COVID-19 lockdown measures [265-269].

Conclusion

This scientific field possesses immense potential that may provide 
incredible technological advances soon. The research findings covered 
in this review article could open many doors to new endeavors. Having 
more reactive oxygen atoms per molecule, ZnO2 can be considered as 
a stronger oxidizing agent than ZnO. This unique property makes its 
nanoparticles an excellent candidate for potential breakthroughs in 
analytical, biomolecular, food, material, and separation sciences. In 
addition, mono-dispersed ZnO2 nanoparticles could be coupled with a 
magnetic core to produce nanocarriers for in-situ disruption of cancer 
cells. High-performance nano-filtration and reverse-osmosis could 
be developed with ZnO2 for fouling remediation with self-cleaning 
feature. For future applications, intelligent antibacterial food nano-
packaging could undergo new developments through incorporation 
of ZnO2 nanoparticles to the packaging film. It will become more 
and more important that the presence of ZnO/ZnO2 in wastewater 
is detected and quantitated for the protection of environmental 
sustainability and public health. The knowledge gap in this dynamic 
field, as highlighted in this review, will require novel research work.
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