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Introduction

Among the features of nanodevices is the inefficient dissipation 
of heat, which can lead to material degradation. Consistently, the 
decrease of the thermal conductivity (see, e.g., [1-3]), which hinders 
heat exchange, calls for more involved materials models. Nanoscale 
systems with dimensions comparable to the mean-free path of 
particles (or phonons) nonlocal effects are required to be inserted in 
the model. Furthermore, in microdevices working at high frequencies 
also relaxation effects occur so that realistic models need to account 
for the time delay of relaxation processes. Diffusion processes are also 
of interest in nanodevices and this indicates that a proper modelling 
of fluid flow in porous media is required.

In essence, nonlocality and relaxation are modelled by means 
of spatial and time derivatives of suitable order in the equation of 
motion and the balance of energy. This paper develops a modelling 
for fluid and heat flows through an approach that is based on two 
principles: objectivity and thermodynamic consistency. Objectivity 
means that constitutive equations are form-invariant under the group 
of Euclidean transformations [4,5]. Thermodynamic consistency 
means that, granted the validity of the balance equations, the 
constitutive equations make the entropy production non-negative. For 
definiteness, from the technical side, this paper follows the view that a 
convenient approach should be grounded on the theory of mixtures. 
That is why we begin with the main points of the theory of mixtures. 
Next the constitutive equations are established for stress tensor and 
heat flux in fluid-solid mixtures with relaxation properties. The results 
are combined with models occurring in the literature about flow in 
porous media.

Notation and Balance Equations for Mixtures

The body under consideration is a mixture of n constituents 
occupying a time-dependent region of the three-dimensional space. 
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The subscript α= 1, 2,..., n labels the fields pertaining to the α-th 
constituent andΣα is a shorthand forΣn

α=1The compact notation is used; 
for any pair of vectors u, v the symbol u·v denotes the inner product, 

 and likewise for tensors,  The 
symbol ∇ denotes the gradient, ∇· the divergence, and ⊗ the dyadic 
product.

Denote by the subscript α= 1, 2, ..., n the quantities pertaining 
to the α-th constituent. For any function  the dashed symbol  
denotes the material derivative relative to the pertinent constituent, 
viz.

 

The conservation of mass of single constituents results into the n 
continuity equations

 

The equations of motion are written in the form

 

where Tα is the (Cauchy) stress tensor, bα the body force, mα the 
interaction force, or growth, between constituents. The growths are 
subject to

 

No body couples are considered and then the balance of angular 
momentum results in

 

Let  be the specific internal energy. The local version of the 
balance of energy eventually reads

where  is the energy supply and
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Lastly we look at the second law of thermodynamics which, also for 
mixtures, places restrictions on the admissible constitutive equations. 
For any α-th constituent let  be the absolute temperature and  
the specific entropy. The balance of entropy is derived by the general 
view that the entropy change equals the entropy transfer plus the 
entropy production. This is made formal by letting jα be the entropy 
flux, the entropy supply and the entropy production so 
that

 

The set of functions

 

constitutes a thermodynamic process. The axiom, known as 
entropy principle or second law of thermodynamics, about the 
increase of entropy in a closed system is stated by saying that the 
entropy production is non-negative for any thermodynamic process 
consistent with the balance equations. Formally, for mixtures the 
second law of thermodynamics requires that

 

for any thermodynamic process.

This statement is based on refs [6-8]. Following [9] and [5], §9.3, 
we let the entropy productions  be given by constitutive equations, 
as is done for the entropy fluxes {jα} after [7].

If the constitutive equations make the inequality non-valid then 
those constitutive equations are not admissible. That is why we can see 
the second law as the selection of physically admissible constitutive 
models.

For technical convenience we put

 

kα being referred to as extra-entropy flux. Hence we can write eq. 
(4) as

 

Substitution of from (3) results in

 

Using the Helmholtz free energy we have

 

Hence the second law is expressed by the Clausius-Duhem (CD) 
inequality

We now investigate the thermodynamic requirements on the 
pertinent constitutive equations. 

Solid-fluid mixtures 

With the view of modelling porous media, we consider a binary 
mixture with a solid and a fluid; we denote by the subscripts f, s the 

quantities pertaining to the fluid and solid constituents. The fluid is 
viscous and compressible. To describe relaxation effects, both stress 
and heat flux are modelled through rate equations as is the case for 
the Maxwell (or Maxwell-Wiechert) fluid and the Maxwell-Cattaneo 
equation of the heat flux; account of nonlocality through higher-order 
derivative is developed in [10] via the Guyer-Krumhansl form.

Owing to objectivity, the rate has to be expressed through 
an objective time derivative. The simplest one is the corotational 
derivative namely

 

for vectors a and tensors A while W is the pertinent spin tensor 
(Wf or Ws). Hence we assume

 

where Ks ∈ Sym is non-singular. If the rates vanish then eqs (7) and 
(8) reduce to the Navier-Stokes and Fourier laws; for formal simplicity 
the longitudinal viscosity coefficient is taken to be zero.

To frame these assumptions in a consistent thermodynamic 
setting we let

 

and derive the constitutive equations for  of the fluid 
and the solid. We let θf = θs = θ while ∇ θf ≠ ∇θs. Then we observe that

 

we put mf = − β(|u|)u, u = uf − us, and hence

 

With these assumptions the extra-entropy fluxes kf, ks turn out to 
be zero; to save writing we omit them. Hence the CD inequality takes 
the form

 

Compute  and observe that the relations

 

follow as a consequence of the linearity and arbitrariness of θ`f, θ`s 
trDf, (Δθf)`, (Δθs)`, `Df . Next we recall the identity `Es = FT

sDsFs and 
notice that, by (7) and (8),

 

and the like for qs. Thus we can write the remaining terms of the 
CD inequality as
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We first consider the dependence on Wf and Ws,

 

The linearity on Wf,Ws and the arbitrariness of , qf, qs imply 
that each term has to vanish; the vanishing of the second and third 
terms results in

 

Next since W ∈ Skw then for any tensors A,B we have 

hence  implies that

 

The linearity and arbitrariness of Df,Ds, ∇θf, ∇θs imply

 

The CD inequality then reduces to

 

and hence each term has to be non-negative.

By using (11) and (12) we find

 

The symmetry conditions (9) and (10) hold identically while (13) 
holds if and only if

 

namely the expected relations for heat conductivities Ks, , shear 
viscosity μf, and interaction force coefficient β.

Dynamics of Viscous Fluids in Porous Media

The dynamics of the fluid is governed by the balance equations. 
With reference to the literature (e.g. [11] and refs therein), to simplify 
the notation we restrict attention to the fluid, omit the subscript f and 
use a superposed dot, ε˙, instead of a slash, ε’. The continuity equation 
and the equation of motion read

 

 

where g is the acceleration gravity. The function βv generalizes 
Darcy’s model through the Forchheimer function β while, as usual, it 
is assumed vs = 0. According to (15) we have found that any β ≥ 0 is 
consistent with thermodynamics.

Things are more involved with the balance of energy, namely

 

By definition,

 

Hence the balance of energy involves θf, , q, which requires 
that the rate equations (7), (8) are applied.

Conclusions

The thermodynamic analysis provides a complete scheme of 
dynamic equations for the flow of fluids in solids. Yet the general 
scheme so obtained is quite cumbersome thus justifying some 
approximations applied in the literature. Quite often β is taken to be 
constant but, foremost, the fluid is taken to incompressible, ∇ · v = 0, 
while .

The dependence of ε on  and q is not considered and (see, e.g., 
[12]) ε is assumed to depend only on the temperature θ.

According to eqs (14) and (16) the free energy ε is independent 
of  and q if

 

c1, c2 being positive parameters possibly dependent on  . Though 
this looks a very specific model, eq. (17) is the necessary assumption 
that makes ε (θ, ) thermodynamically consistent if Tf and qf are 
subject to the rate equations (7) and (8).
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