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Introduction

Japanese coastal area has typical biodiversity in the Asian ocean 
cause of two big ocean currents such as Japan current from southeast 
asia and Oyashio current from Arctic ocean. Moreover, one of the 
eelgrass “Zostera marina” habits around the Japanese coastal area and 
provide the life of marine biodiversity. This huge ecosystem services 
based on the feeding place, spawning ground and habitats for shells, 
squid and small fishes each other. Unfortunately, eelgrass meadows in 
Japan were significantly damaged by development of the coastal area 
and factory effluent in the 1960s, a period of high economic growth, and 
are expected to continue declining in the future [1]. These phenomena 
cause the coastal areas to lose their habitat for seaweed and to reduce 
important fishery resources that have been deprived of habitats. 
Because, Zostera marina support marine life, including epiphytic 
organisms as well as coastal fisheries resources and contribute to marine 
environments by stabilizing bottom sediment and maintaining coastal 
water quality [2]. In addition to this, it recently has been reported that 
Zostera marina absorbs not only CO2 from the sea, but also about 17% 
from atmospheric CO2 when exposed at low [3]. Thus, Zostera marina 
habitats are considered one of the most valuable marine ecosystems 
because they has both a supportive place for marine life and a very 
efficient storehouse of atmosphere-derived CO2 as blue carbon [4,5]. In 
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this study, we suggest the novel eelgrass protection technique applied 
with MICP technology. MICP has developed for the geotechnical 
applications such as liquefaction after earthquake, exchange heavy metal 
ions and self-repairing concrete for coastal erosion [6-8]. We modified 
the following MICP reaction mechanisms.

CO (NH2) 2 + 2H2O → 2NH4 
+ + CO3

2- (1)

CO3
2-+ Ca2 + → CaCO3 (2)

Marine bacterial urease catalyzes hydrolysis urea to ammonium 
and carbonate ion same as Sporosarcina pasteurii (eq1). After that, 
calcium carbonate precipitates from carbonate ion and calcium ion 
(eq2) between coastal sand particles. Then, coastal sand combines by 
calcium carbonate crystals and produces solidified marine-biocement 
(Kusube et al. 2020) [9]. The marine-biocement is harmless for several 
marine organisms cause of produced from marine bacteria and coastal 
sand. Therefore, we propose sustainable and convenience protection 
of eelgrass meadows with this marine-biocement.

Materials and Methods

Isolation and Identification of Urease Producing Bacteria

Urease producing bacteria were isolated from coastal sand 
collected from Shirahama-cho, Wakayama, Japan (33.692241°N, 
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135.336596°E) with Urea agar base (UAB) plate (Thermo Scientific 
Co. Waltham, Massachusetts, US) for screening culture media. The 
colonies with pinkish halo were pure cultured on a fresh UAB plates 
at least 5 times and were cultured at 30.0°C. After single colony 
culture, bacterial genomic DNA was extracted by 95.0°C boiling for 
15 minutes. The 16SrDNA gene was amplified with universal primer 
27F and [10] on the extracted each bacterial DNA. PCR program 
showed as denaturation at 94.0°C for 10 minutes and 25 cycles of 
denaturation (95.0°C, 30 seconds), annealing (55.0°C, 15 seconds) and 
extension (72.0°C, 30 seconds). And finally, gene extended at 72.0°C 
for 3 minutes. The elongated 16SrDNA sequences were determined 
by macrogen.co (Tokyo, Japan) and isolated marine bacteria was 
identified with Basic Local Alignment Search Tool BLASTN program 
[11]. A Phylogenetic tree was constructed by the neighbor-joining (NJ) 
method using MEGA X (ver.10.2.4) software with alimental sequenced 
data. An interior branch test was carried out (heuristic option and 1000 
replications) to check the tree topology for robustness [12].

MICP Mechanism Applied to Marine-Biocement

Coastal sand 40.0 g was mixed for the making marine-biocement 
with isolated marine bacterial pellet from 100 mL culturing media 
and ionic solution 10 mL containing 0.75 M calcium chloride and 
1.5 M urea [13-15] in the plastic tube (27 mm diameter and 50 mm 
height) with 2 mm mesh holes on the side of tubes to easy penetrate 
ionic solutions. The soaking materials placed at 25°C for 1 day to fully 
enzymatic reaction on the surface of the sand particles. To increase 
hardness of the marine-biocement, this treatment was repeatedly 2 
more times. After this enzymatic reaction, marine-biocement was 
washed out excess ionic solution in distilled water and completely 
dried up at 110°C for 3 days to prevent hardening by quenching.

Measurement of Unconfined Compressive Strength of 
Marine-Biocement

In this study, Unconfined Compressive Strength (UCS) 
measurement was adopted to assess the strength for the purpose of 
determining the physical strength properties imparted on MICP. 
The UCS measurement have been used in most of the experimental 
programs reported in the literature in order to evaluate the 
effectiveness of the stabilization of marine-biocement [16] (Cheng, 
Shahin and Ruwisch 2014). UCS measurement is a compression test 
of a cylindrical rock specimens under confining pressure where the 
loading path is followed by a computer. After MICP curing, specimens 
were extruded from the mold, and it was sized 27 mm in diameter 
and 40 mm in height. And the strength properties of each marine-
biocement were measured by UCS measurement, and shear strength 
were determined. Shear strength is a measure of how much stress 
(force/area) can be applied before the material undergoes shear failure.

Scanning Electron Microscopic (SEM) Observation and 
Energy Dispersible X-ray Spectrometry (EDX) Measurement 
of Marine-Biocement

The binding precipitate morphology and chemical component was 
analyzed with SEM-EDX analysis. Marine-biocement was dewatering 
treated with 50% acetone solution stepwise to 100% acetone in 
order to reduce the water molecules in the marine-biocement and 

completely vacuum drying with evaporator. After drying, marine-
biocement for SEM-EDX specimens were stored in desiccator at room 
temperature. The binding precipitate morphology was observed by 
SEM (FlexSEM1000II, HITACHI, Tokyo, Japan). The SEM specimens 
were coated 17 nm thickness platinum with AUTO FINE COATER 
(JFC-1600H) and SEM analysis was carried out at 15 kV and 62 mA. 
The chemical components of binding precipitates were analyzed by 
EDX system (AZtecOne, HITACHI, Tokyo, Japan). Kα spectra was 
used to analyze the surface precipitates.

Quantitative analysis of CaCO3 in marine-biocement

To dissolve calcium carbonate, a calcite-acid reactor chamber was 
used [17]. The device consists of a reactor chamber, pressure meter 
and valve for the exhaust gas.

The ratio of binding calcium carbonate C is defined as:

 (3)

The 1.0 g of marine-biocement was placed into reactor chamber, 
and binding calcium carbonate include the marine-biocement was 
measured under standard conditions (25.0°C, 1 atm). The 10 mL of 1.0 
M hydrochloric acid added to generate the CO2 gas from the calcium 
carbonate. The calibration curve was made with standard pure CaCO3 
reagent (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan). 
The reactor chamber was sealed and gently shake to facilitate dissolve 
CaCO3 in the reactor chamber. The binding calcium carbonate in 
marine-biocement was calculated from the calibration curve and the 
blank as non-treated coastal sand.

Germination test from Marine-Biocement with Zostera 
marina

In the creation process, a hole of φ 3 mm H 15 mm was dented 
on the upper part of the marine-biocement and three seeds of Zostera 
marina from Eiga jima, Hyogo prefecture provided by the NPO 
corporate seed of Zostera marina bank were embedded in marine-
biocement of S1-1 which was most hardest of all specimens in UCS 
test. Only the seeds that showed high density in saturated saline were 
selected. Selected three seeds were planted each marine-biocement 
hole and covered with sea-sand and placed in a water tank (35 L) as 
germination condition irradiated for 10 hours for a day with LED light 
to accelerate germination, circulation of natural seawater controlled 
at 10°C constant [18]. As a control, seeds were sowed at 10 mm deep 
under the seasand and germinated spontaneously and compared with 
the germination rate from marine-biocement.

Results and Discussion

Phylogenetical Relation of Isolated Urease Producing 
Bacteria

Five isolated strains were identified from approximately 1,200 bp of 
16SrDNA sequences. The results shown that they were closely related 
as well as to bacteria genus belonging to the Cupriavidus, Bacillus 
and Pseudomonas. These 16SrDNA sequences submitted on DDBJ 
and BLAST results suggested that the closest relatives of Cupriavidus 
basirensis S1-1 (Accession No. LC760339), Bacillus cereus S1-2 
(Accession No. LC760340), Pseudomonas ceruminis S1-4 (Accession 
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No. LC760341), Pseudomonas nitroreducens S1-5 (Accession No. 
LC760342) and Priestia megaterium S1-8 (Accession No. LC760343) 
cause of E value 0.0, 0.0,0.0 and 0.0, identified value 99.24%, 99.50%, 
98.24% and 98.86% respectively. These sequences have been deposited 
in DDBJ are available under accession numbers LC760339-43). These 
strains included the urease producing bacteria isolated from marine 
environment previously reports (Figure 1). The relationship between 

isolates and previously reported marine urease producing bacteria 
showed in Figure 1. Phylogenetic analysis shows that the no specific 
species need for producing marine-biocement, it means that is able 
to isolate in every marine environment. Moreover, these bacterial 
species were already applied for industrial bio-remediation such as 
oil degradation, clean up for soil and water contaminated with heavy 
metals and/or chlorinated organic compounds [19,20].

Figure 1: Neighbor-joining tree based on bacterial 16S rRNA gene sequence data from different isolates of the current study along with sequences available in the GenBank database. Bootstrap 
values calculated from 1000 resamplings using neighbor-joining are shown at the respective nodes when the calculated values were 50% or greater. The phyla to which the strains belong are 
presented on the right.
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Characterization of Marine-Biocement

The relationship between bacterial CaCO3 (weight%) and UCS 
level (kPa) of the marine-biocement was shown at Figure 2. Isolated 
bacteria produced 1.7%-3.9% of CaCO3 crystalline and then hardness 
showed 36-449 kPa in UCS level. Strain S1-1 showed the highest 
CaCO3 amount and UCS level were 3.9% and 449 kPa, respectively. 
On the other hand, bacterial-free blank included 1.8% of CaCO3 
content and showed 106 kPa hardness. In addition, marine-biocement 
with strain S1-1 shows CaCO3 content is 2.1 times higher than blank, 
and 4.2 times higher UCS level than that of blank. This result shows 
that was good related CaCO3 content and UCS levels. Because CaCO3 
crystalline could be binding with each sea-sand particles to be strength 
enhancement (Figure 2). Moreover, CaCO3 crystalline grew up on the 
surface of sand particles by urease producing bacteria. The important 
point is the urease producing bacteria was adsorbed on the surface of 
the sea-sand particles through the bacterial membrane electrostatic 
interactions. Previous studies have shown that bacterial cell surfaces 
are negatively charged and adsorb onto the particle surface [21,22]. 
The marine-biocement S1-1 induced ideal MICP system and was 
ocean-friendly materials cause of natural sea-sand and isolated 
bacterial species from the ocean. Biomineralization with S1-1 never 
reported. Therefore, it was suggested that S1-1 may be a urease 
producing bacteria that can be newly used for biomineralization.

Observation of Surface of Marine-Biocement Using SEM-
EDX

SEM allows a direct and closer look at the CaCO3 bonds developed 
at the interparticle soil particles and the EDX analyzer records the 

counts of representative elements from the elements’ spectrum for 
provides insights the MICP mechanism with coastal sand with local 
marine-bacteria [23]. The hardest marine-biocement with isolated 
strain S1-1 surface characteristics was shown in Figure 3. Figure 3(a) 
shows a SEM image of specimen of marine-biocement S1-1, and b, 
c, e and f show calcium and silica elemental mapping results by EDX 
analysis. EDX analysis was used to observe the elements included 
in marine-biocement. Figure 3(d) shows precipitated short rod like 
crystals on surroundings of the sand particle surfaces. The average of 
crystalline size was 10-20 μm in length and 5 mm in diameter, and 
this rod like shape agree with aragonite crystals [24]. The crystal 
phase (Figure 3(a)) and calcium phase (b) were overlapped in these 
SEM-EDX images, but silica phase was detected at the other region 
in Figure 3. Because of calcium from bacterial CaCO3 and sand main 
silica compounded chemicals such as SiO2 and Al2O3 for about 70% 
of the total in Japanese coastal sand. Furthermore, this is the evidence 
of CaCO3 crystal layer could be bind another sand particle on the 
same frame of the sand particle surface. SEM image of bacterial free 
specimen was shown in Figure 3(g) and 3(h).

There were observed flat phase on all surfaces and never confirmed 
rod like crystals as aragonite. Quantitative EDX results were provided 
to supplemental Figure 1 and shows that the composition ratio of 
marine-biocement that is mainly contained carbon (48%), oxygen 
(34%), silicon (7%) and calcium (4.3%) in bacterial one. In contrast 
that, no calcium detected in bacterial free specimen. Therefore, isolated 
urease producing bacteria begin to the MICP process in marine-
biocement same as the other applied MICP materials (Supplemental 
Figure).

Figure 2: Relationship between CaCO3 content of the marine-biocement and UCS. (S1-1: Cupriavidus basirensis, S1-2: Bacillus cereus, S1-4: Pseudomonas putida, S1-5: Psedomomas nitroreducens. 
S1-8: Bacillus megaterium).
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Figure 3: SEM images of marine-biocement with strain S1-1. CaCO3 crystals on the surface of sand particle (a) and Enlargement of crystal region (d). Chemical composition analysis on the sand 
surface by Energy Dispersive X-ray (EDX) system (b, c, e) and (f). Blank as Marine-biocement surface without urease producing bacteria surface SEM image (a). And chemical composition by 
EDX analysis of blank. 

Figure 4: Germination image of Z. marina from seeds. (a) Two white coleoptiles from marine-biocement after 23Days after the germination test (b) 2 months after the test, they were grown 
green leaves up to 4.7 cm. The formation of parallel veins was confirmed.
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Zostera marina Germination Test with Marine-Biocement 
for the Blue Carbon Systems

Figure 4(a) shows the germinated two white coleoptiles from 
marine-biocement after 23 days after seed sowing. Green leaves started 
photosynthetic for some bubbles come from leaves surface in 30 days. 
After 2 months, green leaves growing up to 4.7 cm length and leaf 
vein formation was confirmed. This final germination rate was 26.7% 
of marine-biocement S1-1 and 23.3% from sea-sand. The maximum 
leaf length from the marine-biocement and sea-sand were 4.7 and 
4.9 cm, respectively. The lack of difference in germination results 
between marine-biocement and sea sand conditions indicate that 
marine-biocement can be used to germinate Zostera marina. From 
these results, it means that this marine-biocement can be applied to 
the marine environment and ecosystem protection.
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