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Introduction

During the study of melt inclusions in quartz of a pegmatite body 
related to the Variscan Ehrenfriedersdorf tin deposit in the Central 
Erzgebirge/Germany, we often found high concentrations of Cs in 
different inclusion types: water-poor melt inclusions rich in Cs, water-rich 
melt inclusions with a moderate Cs content, and extreme Cs-pentaborate 
rich inclusions trapped near the crest of the main solvus. The primary 
solvus curve (B vs. H2O) results from the simultaneous enrichment of 
water, boron, and fluorine and forms a pseudo-binary solvus (H2O + 
B2O3 + F + Silicate melt) versus temperature (Figure 1a and 1b).
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From these curves (Figures 1a and 1b), we see that at the critical 
point (solvus crest), a high concentration of H2O, B2O3, and F are 
present: about 27.5, 4.2, and 9.0%, respectively. The data are from 
published and unpublished data from Veksler and Thomas (2002) [1-4].

From unpublished hydrothermal diamond anvil cell (HDAC) 
experiments performed in 2002 together with Ilya Veksler and 
Christian Schmidt, we know that using synthetic pegmatite melts 
similar to the Ehrenfriedersdorf pegmatite with about 50 [% (vol/vol)] 
water in the temperature range from 840 down to 300°C multistage 
liquid-liquid immiscibility processes happens. Each main phase 
ever formed tends to liquid immiscibility. Such compartments are 
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Figure 1a: Boron versus water concentration in conjugate type-A (blue) and type-B melt 
inclusions (red) in the Ehrenfriedersdorf pegmatite quartz. Both compounds portray a 
solvus curve (melt-water). Included are the corresponding isotherms (500, 600, and 
650°C) - see Thomas et al. (2003) [1].

Figure 1b: Fluorine versus water (H2O) concentration obtained from melt inclusions from 
the same Ehrenfriedersdorf pegmatite quartz.
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very contrasting and show extreme enrichment of rare elements like 
boron, fluorine, cesium, beryl, tin, and others (e.g., Thomas et al. 
2019 and 2022) [5,6]. This specific experiment, unfortunately, ended 
short before the total homogenization at about 900°C by the crash of a 
diamond of the HDAC. This experiment shows, however, clearly that 
the formation of such water-rich melt is only possible at very high 
temperatures, and consistently, with cooling, multi-phase separation 
happens steadily down to low temperatures around 160°C (Figures 2 
and 3). If we look at Figure D at Schröcke’s contribution (1954) [7], it 
follows that primary forming this pegmatite type is impossible in situ. 
We need high water and energy to develop a mass of pegmatite bodies 
shown there (see also Johannes and Holtz, 1996) [8]. In a couple of 
publications, Thomas [9-14] and Thomas et al. [15,16] have shown that 
by the finding of typical mantle minerals in granites and pegmatites, 
the supplier of the necessary water (energy and other components) can 
be supercritical fluids coming directly from the mantle region. From 
the unfinished HDAC experiment (see above), we have learned that 
during heating and cooling, many phase changes happen, primarily by 
liquid-liquid immiscibility (see exemplary Figures 2 and 3).

Sample Material

The sample material (Qu8) comes from a miarolitic pegmatite body 
in the Sauberg tin mine near Ehrenfriederesdorf, Germany. A description 
of the locality is in Webster et al., 1997 [4]. The quartz sample was as 
big as your fist. Many 500 µm thick on both sides polished slices are 
produced from this sample. The vapor phase of some melt inclusions in 
this quartz contains high hydrogen, methane, and CO2 concentrations: 
XH2=0.58, XCH4=0.26, XCO2=0.16 (Thomas and Webster, 2000) [17]. In a 
quartz crystal (Qu8-45) from the same pegmatite, here not studied, we 
have found large aggregates of graphite and nanodiamond.

Methodology

The general used methods are described in Webster et al. 1997 
[4] and Thomas [13] and references in there). For the microprobe 
study (main and trace elements), we mainly used the CAMECA SX50 
microprobe. We used Raman spectroscopy (see Thomas 2023e and 
references) [13] to determine the water as the basis component for 
constructing the pseudo-binary solvus curves (see also Thomas and 
Davidson, 2016) [18].

Figure 2: Look through the microscope at the sample chamber formed by an Ir-gasket 
with a hole of 300 µm between two diamonds of the HDAC at two different temperatures. 
Conspicuous are the different phases formed by liquid-liquid immiscibility.

Figure 3: The same HDAC experiment at lower temperatures (390 and 160°C). V: Vapor, XXX: 
late-formed crystal. The “crystals” marked area stands for the melt 1+2, now wholly solidified. 
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Results

This contribution is only restricted to cesium (Cs) results. Cesium, 
with a Clarke value of about 5.0 ppm in granitic rocks (Rösler and 
Lange, 1975) [19], is enriched to extremely high values of about 160000 
ppm. That corresponds to an enrichment of 32000 fold, an incredible 
value. Further, we see relationships between Cs and H2O, Cs and B2O3, 
and B2O3 with H2O. Figure 4a demonstrates the enrichment of Cs (as 
Cs2O) with water. The Cs shows here a good Lorentzian distribution. 
The data come from typical melt inclusion in the pegmatite quartz 
from the Sauberg mine. The same distribution type results for Cs and 
B in Figure 4b. This figure shows strong enrichment of Cs at a more or 
less constant B2O3 concentration of about 2.3% B2O3. According to He 
et al. (2020) [20], B2O3 reduces pollucite’s [(Cs, Na)(AlSi2)O6 • nH2O] 
crystallization temperature (maybe under 700-600°C) and improves 
immobilization through an encapsulation effect here by Al-silicates. 

The melt inclusions are relatively water-poor (~5%) and represent 
the heavy residue. Figure 4c shows the simplified solvus curve for 
the system melt-H2O versus B2O3 (Figure 1a). Figure 4d displays the 
extreme Cs enrichment near the solvus crest of the Melt-H2O – B2O3 
system as Cs-pentaborate (Ramanite-(Cs). At first, this Cs-pentaborate 
was found in pegmatite material from the Isle of Elba (see Thomas et 
al., 2008) [21] – later also in Malkhan (Thomas et al., 2012) [22] and 
Ehrenfriedersdorf (Sauberg mine). The Lorentzian distribution of Cs 
vs. B is untypical, and Cs vs. H2O is typical for some elements (Be, Sn, 
and others [5,6]. Table 1 gives the fit data for the three Cs distributions.

In comparison to Figure 4a, the distribution of Cs2O vs. H2O 
shown in Figure 4d is a little bit shifted to higher water concentrations 
(maybe the real critical point of the system) or by the crystal water in 
the formula of Ramanite-(Cs) [CsB5O8 • 4H2O] – see Thomas et al. 
2008) [21].

Figure 4: (a) Distribution of  Cs with H2O, (b) Cs with B, (c) H2O and B, (d) Cs as Ramanit-(Cs) with H2O. The microprobe data for (b) are from Thomas et al. 2019 [5].

Distribution Area Center (%) Width (%) Offset (%) Height (%) R2

Cs2O-B2O3 5.226 2.264 0.553 1.621 6.012 0.90983

Cs2O-H2O 26.592 25.991 5.631 0.134 3.006 0.96752

Ramanite-(Cs) 13.309 29.992 0.900 5.676 9.419 0.99436

Table 1: Lorentzian fit data.
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Discussion

The here-shown enrichment of Cs during the crystallization 
of a pegmatite-forming melt related to the Variscan tin deposit 
Ehrenfriedersdorf is unexpectedly high. The origin of such 
distributions is, at the moment, not clear. More research is 
indispensable. Are such Lorentzian-type distributions of elements 
with water a characteristic feature of the participation of supercritical 
fluids at the tin mineralization here? Some elements (Be) are Gaussian 
distributed (see Thomas 2023d) [12]. What are the reasons for the 
different distribution types? Which physicochemical processes are 
the determining steps? Figure 4 shows that the behavior of Cs in 
water-rich high-temperature melt-water systems is very complicated. 
Therefore, is storing the radioactive 137Cs as boron-stabilized pollucite 
doubtful (see Yokomori et al., 2014) [23,24]. Because each element 
in the supercritical state can enriched to high values, we assume, in 
principle, that universal cooperative interactions between the particles 
under these conditions will work. The opposite is, up to now, not 
proved.
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