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Introduction

Water is the most essential magmatic and pegmatitic volatile. 
Exact knowledge about the amount of water during magmatic and 
pegmatitic crystallization processes is critical in understanding the 
behavior of volatiles in silicate melts. Therefore a simple method for 
determining total water is necessary. The technique must be simple, 
fast, and cover a large concentration range. Because most information 
about the water in magmatic-pegmatitic systems comes from melt 
inclusions, the method must also have a high spatial resolution and 
sensitivity.

The author used micro-Raman spectroscopy from the beginning 
(1998) for this challenge. The author published the first data produced 
between 1998 and 1999, together with Webster and Heinrich [1]. The 
most significant problem was the acquisition of reference glasses with 
testified and independently determined water concentrations. The 
demand for a simple Raman spectroscopic method was in the air [2]. 
However, they are standing in this time only at the beginning.

Reference Samples

The prerequisite for developing such a method is the availability of 
good standards. In the first step, the author used synthetic glasses (of 
albite, granitic, or pegmatitic composition) with water concentrations 
determined with the Karl-Fischer method. These glasses come from 
different authors quoted in Thomas [3]. Water concentrations higher 
than 12% in silicate glasses are unstable over time. Therefore the author 
used for higher concentrations water-rich melt inclusions in pegmatite 
quartz. To obtain the necessary homogenous glass, the melt inclusions 
must be homogenized under pressure and subsequently fast-cooled 
using rapid quenching methods (see Thomas et al. [4,5] and the 
Electronic supplementary material - ESM). Generally, homogeneous, 
water-rich melt inclusions (>25%) are metastable and disintegrate 
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after the first measurement into a water-bearing stable glass and a 
water-rich volatile sub-phase. Then the bulk-water concentration 
results from the water in the partial volumes. We used pure glasses 
as references with very low water concentrations below the ppm level. 
Thomas [6] determined the water content of these glasses with the 
self-calibrating proton-proton (pp) scattering method [7].

Methodology

For the measurements, we used primarily a Dilor XY Laser 
Raman Triple 800 mm spectrometer equipped with Olympus optical 
microscope and long-distance 80x and 100x objectives. The spectra 
were collected with a Peltier-cooled CCD detector [8]. We used the 
514 and 488 nm lines of a Coherent Ar+ Laser Model Innova 70-3 and 
a power of 150 mW for the sample excitation. We obtained effectively 
interference-free Raman spectra of tiny melt inclusions embedded 
in the transparent quartz matrix with the confocal technique. The 
integral intensity in the 3100-3750 cm-1 frequency range was used for 
all measurements. Starting in 2006, we used a LabRam HR800 UV-
VIS spectrometer for all further measurements. This exchange gave 
no problems because we could, using well-studied reference samples, 
transform the calibration data for the new device. Furthermore, 
starting in 2006 [6,9], we used the so-called “Comparator Technique,” 
justified by the fact that the calibration curve is strongly linear and goes 
practically through the zero point. However, note here that the exact 
zero point is for the integral intensity not defined. With this work in 
2006, we could also determine the water content in homogenized melt 
inclusions deep in the quartz matrix by extrapolation to a deep of zero 
because the integral intensity increases linearly with the decrease of 
the surface layer (for example, by polishing). Another way is the use of 
different deep inclusions with the same composition. If on both sides, 
the polished sample is not too thick (~200 µm) and the inclusion is not 
precisely between both surfaces, then can, from two measurements, 
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the water content adequate be determined or estimated. In 2006 we 
also showed that integral intensity between 2250 and 2900 cm-1 for 
D2OT forms a linear relationship with the concentration and can 
be used to determine D2O beside the water. We have made such 
determination (H2O and D2O) for water-rich melt inclusions in the 
Shaw meteorite [10]. Regarding the rare appearance of fluorescence in 
the frequency range around 3500 cm-1, we have used the weaker band 
at about 1630 cm-1 (see McMillan) [11] to quantify water.

Results

The primary aim was to complete a general calibration curve for 
an extensive concentration range. Also, the simplicity of the method 
was always a request. That was only possible because the research on 
melt inclusion was an essential target over a long time. Forty-eight 
different glasses or melt inclusions were used for the calibration 
curve plot. Each point represents at least 10 determinations [8]. For 
simplification, the ± 1s standard deviation is not shown (however. can 
be seen in Thomas) [8] (Figure 1).

The proof of a general calibration curve was the prerequisite 
for applying the Raman spectroscopy in the simplified form of the 
“Comparator Technique.” That means only one certified reference 
sample is necessary to determine water in glasses and melt inclusions.

Conclusions

The outlined Raman method for determining H2O and D2O can 

also be used in analogy for other components. Thomas (2002) [3] has 
shown that for boric acid [H3BO3] in fluid and melt inclusions and 
later also for sulfate [12], carbonate/hydrogen carbonate (see, e.g., 
Thomas et al. 2020) [13].
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Figure 1: Generalized calibration curve for water in silicate glasses and melt inclusions in 
the concentrations range from about 50 ppm to nearly 50% - that is five orders of magnitude. 
The upper smaller diagram shows the concentration range from 50 ppm (determined with 
pp-scattering – see Reichard et al. (2004) and Thomas et al. (2008) to 1%. 
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