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Introduction

The Earth system absorbs the Sun’s incoming short-wave radiation 
and re-radiates, stores or exchanges it at different rates via natural 
processes. For a planetary condition of thermal equilibrium, the 
amount of total outgoing, long-wave radiation would equal the total 
amount of incoming, short-wave radiation. If outgoing radiation 
does not equal incoming radiation, then the planet’s global body 
temperature will vary both spatially and temporally; so, “climate 
variability”. Many studies have shown that the climate has been 
warming over the 20th and into the 21st Centuries, and they collectively 
attribute the warming climate to fossil fuel burning. Recent studies 
have suggested links between fossil fuel burning and climate warming 
[1-7]. Numerical model studies, such as Millar et al. [8] and Ekwurzel et 
al. [4], employed global energy-balance coupled climate-carbon-cycle 
models which attempted to assess global surface temperatures with the 
emissions of global carbon production. The relationships were visually 
correlated with causality assumed. However visual correlations of one 
curve to the next does not in and of itself establish true attribution, 
and thus “causality”. Herein, our study is based entirely data based, 
and employs only the global temperature time series and the fossil fuel 
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burning time series. Attribution, by definition, links cause to effect.

In this study, we address the global surface temperature anomalies 
(GSTA) of the global surface of the Earth, in the upper panel in 
Figure 1, the global atmosphere surface temperature anomalies 
above land (GLSTA), in the middle panel in Figure 1, and the global 
ocean surface temperature anomalies (GOSTA), in the lower panel in 
Figure 1, from 1850 through the first half of 2018. The reason we limit 
ourselves to 2018 is that the outbreak and spread of the Covid viral 
infection globally, may have effected fossil fuel consumption and we 
will only address more “normal” conditions of greenhouse gas loading 
of the oceans and atmosphere. We employ documented surface-
temperature-anomaly-data. While much attention has focused on the 
global surface atmospheric temperature record, as greenhouse gases 
have built up in the atmosphere, far less attention has been paid to the 
global ocean surface temperature record in-kind. We address that fact. 
Data are from the Climatic Research Unit and the UK Meteorology 
Office, Hadley Centre: http://www.cru.uea.ac.uk/cru/info/.

The climate system, as represented by surface temperature 
anomaly data, consists of non-linear (NL) and non-stationary (NS) 
processes, so we utilize an empirical, mathematical, data adaptive 
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technique to decompose the data. Our mathematical decomposition 
methodology, the Ensemble Empirical Mode Decomposition (EEMD) 
first presented by Wu and Huang (2009) [1-10] produces internal, 
intrinsic modes of variability buried within the temperature data time 
series. We account for the patterns revealed by the internal modes of 
variability, relate them to naturally occurring physical phenomena 
and also compute the overall data time series “trends” which we find 
do not have a natural causal basis. However, we employ a statistical 
hypothesis test for determining whether one time series, such as fossil 
fuel burning, can be useful in forecasting another, specifically global 
surface temperatures, and thus to predict climate warming, past, 
present and future; thus establishing causality.

Background and Methodology

Wu and Huang (2009) developed EEMD based on the 
earlier work of Huang et al. [11-17], which employed the Hilbert 
Transform (the HT) [18,19], in the development of the Empirical 
Mode Decomposition (EMD) methodology. We employ EEMD 
in the decomposition of global surface temperature anomaly data 
time series. It is of note that a mode-mixing problem existed in the 
EMD decomposition in which successive IMFs were discovered to 
occasionally mix with or contaminate each other. To address this 
issue, Wu and Huang (2009) [9,10] added white noise to the various 
time series, created ensembles, and the mean IMFs were found 
to stay within the natural dyadic filter windows, preserving their 
dyadic properties, leading to stable decompositions of frequency 
and amplitude modulated internal modes of variability in the record 
length data. The decomposition reveals temporal internal modes of 
variability (referred to as Intrinsic Mode Functions or IMFs) which 

are frequency and amplitude modulated, and reveal non-linear (NL) 
and non-stationary (NS) signals in the data. The IMFs stack from 
higher to lower frequencies. We also produce data time series “trends”. 
In discussing the trend of any time series, we first need to consider the 
definitions and the methodologies of computing a trend. As such, no 
conventional simple averaging process can be utilized to reflect what 
information is buried in the multiple temperature time series as they 
are non-linear and non-stationary to the naked eye (see Figure 1, for 
example). This underscores the importance of clearly defining what 
constitutes a trend. Granger [20] presented an insightful definition of a 
trend as “a trend in mean comprises all frequency components whose 
wavelength exceeds the length of the observed time series”. For NL, NS 
datasets, none of these definitions is mathematically applicable leading 
to employment of the definition based on the EEMD methodology. 
With EEMD, the non-oscillation “residue”, which is left after the 
higher to lower frequency IMFs are removed from the time varying 
decomposition, becomes the trend of the time series.

Global Ocean and Land Based Atmospheric Temperature 
Anomaly Time Series

Figure 2 shows eleven IMF modes in the GSTA (also true of the 
GLSTA and GOSTA) with the 11th being the overall trends of the land-
based atmosphere, the ocean surface and the combination of the two. 
The IMF modes have their respective physical bases. Mode 1 is several 
monthly variability. Mode 2 is seasonal variability. Mode 3 is the 
motion of the Earth on its axis of rotation. Mode 4 is the annual signal. 
Mode 5 is inter-annual variability. Mode 6 is the dominant signal of the 
El Nino Southern Oscillation (ENSO). Mode 7 is the quasi-Solar Cycle 
(10-12 years), centered about 11 years. Mode 8 reflects both the North 

Figure 1: Monthly averaged time series of GSTA (top), GLSTA (middle), GOSTA (bottom) 01 01 1850-07 31 2018.
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Atlantic Oscillation (NAO) and of the 22-year Solar Cycle. Mode 9, 
60-70 years is the Atlantic Meridional Overturning Circulation Belt 
(MOC), described by Cunningham et al. [21]. Mode 10, 105-110 
years represents the Global Thermohaline Circulation Conveyor Belt 
[22,23]. Mode 11 is the gravest mode or overall trend of the 167-year 
time series of total data (Table 1).

We note in Figure 2, that for the GSTA, the IMF modes 2, 3 and 
10 have amplitudes of 0.4°C, modes 4 and 6 have amplitudes of 0.3°C, 
modes 5, 7 and 9 have amplitudes of 0.2°C and mode 8 amplitude 
of 1°C. Mode 11 ranges between +/- 0.5°C. Thus, all the IMF modes 
contribute to the total time series in temperature amplitudes in a 
nominally equitable manner across the range of 0.1 to 0.4°C. This 
finding suggests that the Planet’s internal, natural modes of variability 
all contribute significantly to surface temperatures and thus cannot 
be ignored. Thus, periods of relative warming and or cooling occur 
naturally by the positive and negative disposition of the natural 
variability, all riding atop overall atmospheric and oceanic trends, and 
presented in the Table 1.

In Figure 3 (left panel), the trend of the GLSTA shows a record 
length total rise of 1.22°C and the GOSTA displays a rise of 0.67°C. 
The collective GSTA rises 0.88°C. The ocean surface temperature has 
risen at a much slower rate than the atmosphere over land. This is 
an excellent example of the power of the EEMD IMF decomposition. 
The full time series of the GOSTA displays an overall beginning to 

end of the series increase of 0.75°C, the GLSTA shows a rise of 2.91°C 
and the GSTA indicates an overall increase of 1.25°C. If connecting 
lines from start to end of the three time series had been drawn, the 
overall trends would have been greatly overestimated, demonstrating 
the failing of traditional methods (see IPCC, 2007) [24] of computing 
a trend, which are to create regression lines. Thus, the IPCC rates of 
rise of GSTA overestimate the actual rises in temperatures over land 
by 0.72°C and by a combined air-sea overestimate of 0.37°C. The IPCC 
straight-line, regression slope estimates are 0.05°C/decade over the 
full GSTA temperature record, 0.07°C/decade over the prior 100 years, 
0.13°C/decade over the previous 50 years and 0.18°C/decade over the 
latter 25 years of the record.

In Figure 3 (left panel), we present the time rates of our trends 
and find that the rates of warming from 1850 through 2017 are 
0.713°C/Century for the GLSTA, 0.427°C/Century for the GOSTA, 
and 0.529°C/Century for the combined GSTA. In the Figure 3 central 
panel, the 1st derivatives of the trend curves are all positive, and curving 
upward indicating that the rate of warming is accelerating. From 1955 
to the present the overall warming trend of the GSTA (Figure 3) has 
been ~0.09°C/decade. Clearly, the rate of warming of air over land 
has globally been 167% greater than that of the surface of the global 
ocean. In the Figure 3 right panel, we present the fossil fuel burning 
time, Carbon Emissions (CE) series from 1751-2014, provided via 
<http://cdiac.ornl.gov/trends/emis/tre_glob.html>. From 1751 

Figure 2: The EEMD Mode decomposition of the 1850-2017 time series of the GSTA (shown in the Top Panel.

IMF 1 2 3 4 5 6 7 8 9 10 11

GLSTA
GOSTA
GSTA

2 M 3 M 6 M 1 Y 2-3 Y 5-7 Y 10-12 Y 20-22 Y 60-70 Y 105-110 Y 167 Y Trend

Table 1: Intrinsic Mode Functions (IMFs) shown in Figure 2, in Months (M) or Years (Y).

http://cdiac.ornl.gov/trends/emis/tre_glob.html
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until 1850, global CO2 production was from 3 MMTs in 1751 to 54 
MMTs in 1850. In the latter half of the 19th century, carbon emissions 
increased considerably, with a dramatic upsurge from 1949 to 2014, 
reaching a value of 950 MMTs and this resulted in the nonlinear rise 
of atmospheric carbon dioxide concentrations. The CE was essentially 
flat from 1751 through the mid latter half of the 19th century when the 
change of carbon burning began to be spiky. One could proceed here 
with cross correlations between the CE and GLSTA, GOSTA and/or 
the GSTA. However, although the temperature curves all display strong 
visual correlation with the fossil fuel burning curve, visual correlation 
does not prove a cause-and-effect relationship or attribution.

Granger Causality relating Carbon Burning to Global 
Surface Temperature Anomalies

We next employ the Granger Causality Test (GCT) [25] to 
obtain evidence for the strength of the causal relationship between 
the carbon burning and atmospheric carbon dioxide concentrations 
and atmospheric carbon dioxide concentrations and the globle 
temperature time series. GCT statistically tests for determining 
whether one time series is useful in forecasting another. Generally 

regressions reflect mere correlations, but Granger argued that by 
measuring the ability to predict the future values of a time series using 
prior values of another time series, causality in economics could be 
tested. A time series X is said to “Granger-cause” Y if it can be shown, 
through a series of t-tests and F-tests on lagged values of X (and 
with lagged values of Y also included), that those X values provide 
statistically significant information about future values of Y. The idea 
is that if series {xt} helps to cause series {yt}, then past values of {xt} 
should improve predictions of series {yt}. This type of causality is 
established by first modeling {yt} in terms of the past values of {yt} 
through an autoregressive (AR) process, then adding past values of 
series {xt} to create a second model. If the second model is statistically 
better than the first, then one has established causality in the Granger 
sense. Testing for Granger Causality in global temperatures has been 
considered by Attanasio et al. [26], Pasini et al. [27-29], amongst 
others. The above papers consider more time series than those 
considered here so they can for example separate out anthropogenic 
forcing and they also allow for non-stationarity in the temperature 
series. Our approach differs in that we consider only anomaly series 
{yt} and one emission series {xt}, and we find a stationary AR model 

1850 1900 1950 2000 2050
Year

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

total
ocean
land

Figure 3: (left panel) The overall trends of the GSTA (blue), GOSTA (red) and GLSTA (yellow) time series. The GOSTA raw data are shown in Figure 2 and represents the GLSTA and the GSTA 
(both not shown). (center panel) The time rates of change or 1st derivatives, of the trends of the GLSTA, GOSTA and GSTA time series. (right panel) The fossil fuel burning curves. Atmospheric 
carbon dioxide concentrations also shown in far right panel Confirming sources are: T. Boden and R. Andres, The Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, 
Oak Ridge, Tennessee 37831-6290, USA; and G. Marland, The Research Institute for Environment, Energy and Economics, Appalachian State University, Boone, North Carolina 28608-2131, USA.
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for the anomalies after appropriately differencing the series and testing 
for white noise of the residuals?, which we justify our modeling by use 
of a time series goodness-of-fit test (see Fisher and Gallagher, 2012). 
One advantage of our methodology is that our final fitted model can 
be used to predict the impact of current (future) carbon emissions on 
temperature. We will approach this in a systematic process.

We first consider establishing a causal relationship between the 
carbon burning time series ({xt}) and the ocean surface temperature 
time series GOSTA ({yt}). Here we model on the monthly scale by 
taking the average temperature anomaly for each year as y and the 
average monthly carbon emission created by taking the yearly value 
divided by 12. Our first model relates GOSTA to past values of GOSTA. 
Using Akiake’s Information Criterion [30] we select the order of the 
auto regression to be three, meaning that each year’s GOSTA is related 
to the values from the last 3 years. The model is fitted using Gaussian 
maximum likelihood [31]. We use the goodness of fit test [32] to 
verify that the AR model adequately models the autocorrelation in 
the GOSTA series; the p-value of 0.9464 indicates that we have found 
an adequately fitting stationary model for GOSTA model given in 
Equation (1):

(1)	

The above model explains the dynamics of the observed series 
solely from past-observed values. However, to establish the (Granger) 
causal relationship we instead add the previous year CE value to the 
model. The resulting model is given by Equation (2):

(2)	

We can test for statistical significance of each fitted coefficient 
using the asymptotic normality of the Gaussian maximum likelihood 
estimators [31]. In particular, we conclude with a p-value of 0.00009 
that the coefficient of xt-1 is non-zero. In other words, the predictive 
model for GOSTA is significantly statistically better if the previous 
year CE is included. Model (2) explains the changes in temperature 
through a combination of autocorrelation (AR) and the impact of 
CE. We have thus established causality in the Granger sense. In this 
analysis, we selected the data beginning in 1950, since the warming 
trend in the latter half of the 20th century is well established (cf. Figure 

3, left panel). However, a similar analysis could be conducted starting 
at any point in the past. For example, the same analyses beginning 
each decade in the first half of the 20th, i.e., in years 1900, 1910, 1920, 
1930, 1940, and 1950, resulted in p-values, 0.00005, 0.0002, 0.00002, 
0.0002, 0.003, 0.009, for the coefficient of xt-1, respectively. In each 
case we conclude the model using the previous year CE is statistically 
better than the AR (3) model alone; the carbon emission series 
significantly improves predictions for GOSTA over the model based 
solely on past GOSTA values. Regardless of starting time, in the 20th 
century, one finds statistical evidence of a causal relationship between 
CE and GOSTA. The coefficient for xt-1 in model (2) is as follows. 
For each additional one-million metric tons of carbon emissions 
(CE), we estimate an increase in global ocean temperature (GOSTA) 
of 0.0007°C. The average increase in carbon emissions per year for 
years 1950 through 2014 is about 130 metric tons per year. Our model 
estimates an increase of 0.007+°C for each 10 metric ton increase in 
carbon emissions. The highly statistically significant coefficients of 
xt-1 for land based atmospheric temperatures and total global surface 
temperatures are 0.0117 and 0.0087, respectively.

We next employ our fitted models to predict the global sea surface 
anomaly (GOSTA), the land atmosphere (GLSTA) and combined 
global surface temperature anomalies (GSTA) for 2015. Figure 4 shows 
the observed anomalies for years 1950 through 2014. The prognostic 
values are remarkably accurate. In the plots, we mark the predicted 
value from our fitted model, the upper and lower 95% prediction 
limits and the observed value for Year 2015. We conducted multiple-
year lag experiments between CE and the surface temperature time 
series, beginning with 10 year down to 1 year lags (not shown except 
for the latter). We find that the model, which uses both past values of 
the anomaly series and the previous year’s carbon emission ( a 1-year 
lag), provides excellent predictions for the observed anomalies of the 
ocean surface, atmosphere on land and the combination therein for 
2015. This provides further empirical evidence of Granger Causality 
relating previous year carbon emissions to sea surface, atmosphere 
on land and the combination temperatures on a global scale. We 
utilized the 2014 and 2015 data because 2014 is the last year for 
which we were able to obtain Fossil Fuel Burning data from the 
website provider at the time that this study was conducted. The results 
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Figure 4: Global Surface Temperature Anomalies from 1949-2014 with Granger Causality Predicted (X) versus Actual Temperatures (O) for 2015 and upper and lower 95% confidence limits. 
(left panel) is for the GOSTA. (middle panel) is for the GLSTA. (right panel) is for the GSTA.
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presented above provide a pathway and portend to future increases in 
global surface temperatures given anticipated increases in fossil fuel 
burning, GOSTA, GLSTA and GSTA as a function of CE. GOSTA is 
increasing at the rate of 0.0007°C/ Million Metric Tons of CE. GLSTA 
is increasing at the rate of 0.00117°C/Million Metric Tons of CE. Thus, 
the GSTA is increasing at the rate of 0.00087°C/Million Metric Tons of 
CE. Presently we are on a trajectory to reach 104 Million Metric Tons/
year of CE by years 2020 to 2022. These numbers are less foreboding 
than the straight-line estimates of both the IPCC and NIPCC, but are 
nonetheless very noteworthy.

Discussion and Conclusions
Mathematical relationships between fossil fuel burning and 

surface temperatures in the oceans and over land are presented. The 
statistical relationship curves reveal strongly that there is a one-year 
phase lag between global carbon loading via fossil fuel burning and 
planetary surface temperature rise, different from Ricke and Caldeira 
[33-41] who proposed that planetary temperatures changed about 
a decade after burning. In fact, robust relationships are presented 
between the GLSTA, GOSTA and GSTA, and their past time 
series, and the CE time series. Via Granger Causality, these surface 
temperatures are predicted very accurately from fossil fuel burning a 
year earlier. Thus, the conclusion we reach is that we have proven that 
there is “attribution” between fossil fuel burning and climate warming. 
In 2007, the IPCC was awarded a Nobel Prize for its comprehensive 
analyses of global climate change, including a visual-correlative-
comparison of fossil fuel burning and temperature rise. However, a 
visual correlation does not prove “causality”. In 2003 C.W.J Granger 
was awarded a Nobel Prize for his work in econometrics theory and 
applications. We invoked “Granger Causality” to attribute the overall 
trends in global surface warming to fossil fuel burning and carbon 
emissions (https://en.wikipedia.org/wiki/Clive_Granger).
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