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Introduction

Archaeological data is intrinsically spatial in nature, and spatial 
analysis can often play a key role in interpreting the distribution 
of archaeological materials across a landscape. This approach is 
particularly useful in a situation where the artefacts are scattered 
across the site without stratigraphic relationships or known features 
to provide the context. In particular, spatial patterning among the 
artefacts and the behavioural interpretation across the site require 
rigorous intrasite spatial analysis and modelling so as to deduce the 
kind of activities that occurred at the site [1]. A range of intrasite 
spatial analytical techniques have been applied to date [2], but the 
treatment of the spatial patterns of the artefacts and other entities 
occasionally presents challenges at the point of interpretation as 
their spatial tendency is not always correctly recognised [3]. This 
is mainly due to the direct application of either (1) a non-spatial 
statistical approach whereby all observations are treated as spatially 
independent in nature and that spatial randomness is warranted as 
the base distribution behind the spatial arrangement of the artefacts, 
or (2) a spatial statistical approach with the understanding that spatial 
dependency exists among the intrasite spatial configuration of the 
artefacts but the spatial patterning is often sought with respect to a 
predetermined set of scales informed by the specific context of the 
site—in other words, the spatial statistical methods are usually applied 
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with parameters set a priori, despite that contexts may not be always 
available. The spatial arrangement of the artefacts found or excavated 
at a site is likely to have spatial dependency among them, and the 
scale of activities (e.g. an individual engaging in a house task, or a 
community taking part in a social activity) will likely vary between 
the types of activities and the participants involved which are difficult 
to calibrate without stratigraphic narratives or known features that 
offer the context. The objective of this study is to identify spatial 
associations between different types of archaeological artefacts 
found across an excavation site and gain knowledge on the spatial 
configuration and the lifestyle of the ancient community that lived in 
this area. To overcome the challenges stated above, this study uses two 
types of spatial analytical methods that can extract the hierarchical 
spatial structure: (1) a local variant of a spatial autocorrelation method 
called Multivariate Local Indicators of Spatial Association (LISA) 
[4], and (2) a hierarchical cluster detection method called Variable 
Clumping Method (VCM) [5,6]. Clustering helps to simplify a large 
archaeological dataset to make spatial patterns easier to discern; but 
they need to be arranged at suitable scales with the recognition of the 
multi-scale across different levels of activities. Finding clusters in the 
distribution of the artefacts across multiple scales would provide more 
natural groupings for use in the subsequent analysis. Exploration of 
the spatial relationships between different types of artefacts through 
LISA could provide us with a clue to infer activities that took place 
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in an ancient time and could greatly enhance our understanding on 
how the landscape was used at the time. The study focuses on artefacts 
retrieved from Williston Reservoir, British Columbia, Canada.

Literature Review

Spatial Analysis in Archaeology

Spatial analysis and GIS have been used in archaeology for years, 
as evidenced in a study by Kintigh and Ammerman (1982) [7] which 
highlights the usefulness of computer-based analysis, informed 
by expert interpretation, for identifying meaningful patterns in 
archaeological data. According to Carr (1984) [1], there are two levels 
of archaeological spatial analysis: inferential and operational. The goals 
of inferential analysis are to spatially delineate the activity areas as well 
as to identify the tool kits of artefact types. At the operational level, the 
focus is placed on identifying patterns in the spatial arrangement of 
different artefact types, including clustering, and relationships between 
different artefact types. In many cases, applying inferential analysis 
may not be suitable. Even where the spatial relationships between 
artefact types can be identified, Carr (1984) [1] cautions that these do 
not imply an activity area and that there may be a number of other 
possible explanations for the observed patterns. Dynamic processes, 
including human activities, occurring in both space and time, have 
contributed to the superimposition of materials to produce static 
patterns [8]. For instance, artefacts may have been found clustered 
due to intense human activity in that location in the past, but Wood 
and Johnson (1978) suggest it could also result from natural processes 
such as water transport and sorting, or recent human activity such as 
farming. Deriving the nature of these processes from the static patterns 
can therefore be extremely difficult. Nevertheless, spatial analysis 
has proven as an important step to understand the nature of the 
archaeological deposits. A number of methods for detecting patterns in 
the spatial distribution of archaeological deposits have been proposed 
in the past and applied by a number of studies [3]. For instance, 
Kintigh and Ammerman (1982) [7] used the k-means cluster detection 
technique to iteratively split and lump points in the dataset into a user-
defined maximum number of clusters and, thereby, minimise the sum 
of the squares of the distances between each point and its cluster centre 
to find the optimal solution. More generally, Carr (1984) [1] refers 
to a number of methods used in intrasite archaeological contexts for 
determining presence of clustering as well as delimiting clusters in a 
point dataset. These include the Nearest Neighbour Analysis [9] used 
for determining presence of clustering; Whallon’s Radius Approach 
[10] for delimiting clusters using the frequency distribution of nearest 
neighbour distances between point observations; and conditional 
spatial patterning, a multi-scale method to test for spatial patterning 
in an archaeological dataset [8].Other applications of these methods 
vary in location, site type and the scale. For instance, in a cave site in 
Western Belize, artefacts scattered on different surfaces, including in 
niches and on ledges, were mapped and recorded in a GIS to analyse 
the spatial arrangement of the archaeological objects [11]. They 
adopted a clustering method, as some artefacts were found in multiple 
fragments in close proximity to one another and that the uses the 
individual object locations for analysis would have resulted in unequal 
weighting. A non-hierarchical method, k-means, was used to define 
natural groupings of objects in space, and the resultant clusters were 

analysed with regard to their association with cave features. Moyes’ 
(2002) [11] findings suggest that clustering and comparative analysis 
of the morphologic cave features could provide the context and the 
relative analytical units for use on a broader scale.

The examples above, however, are situations where the sites and 
the archaeological context are well defined. Many of these methods 
primarily deal with “more or less intact living surfaces” [12] that 
may not be applicable to other archaeological situations that lack an 
intact or a clear definition of the site. An example of such a situation is 
found in Australia; similar to the Williston Reservoir case, where the 
archaeology consists of open sites [13]. These open sites are extensive 
in area size, lack stratigraphy or clear boundaries, and contain few 
features [13]. In essence, it is a vast expanse of a surface scattered with 
primarily lithic artefacts. Site boundaries are difficult to determine in 
this type of landscape and, for the management purposes, arbitrary 
rules are often used to define boundaries that are not meaningful for 
analysis [13]. In these situations, a site-less analysis is required; i.e. the 
analysis is based on individual artefacts rather than sites [13]. As a 
result, the first step with open sites is to identify patterns in the spatial 
location of artefacts; after which, attempts can be made to interpret the 
patterns archaeologically. Holdaway et al. (1998) [13] address these 
concerns through geomorphological mapping of the landscape used 
for understanding the patterns of surface artefact density. This step 
determined that the depositional surfaces had lower artefact densities, 
which were excluded from the subsequent analysis to avoid bias in case 
undiscovered artefacts were buried under the sediments. Different 
buffer radii were used to look at different scales, and the resultant 
cluster patterns of individual artefact types were then used to identify 
assemblages and patterns between artefact types [13]. Other studies 
have also explored different methods for determining the associations 
between artefact types. These include a variety of statistical tests based 
on the number of artefact in partitioned units to determine patterns 
of aggregation and segregation between different artefact classes [14]. 
In this case, the definition of the unit shape and size may impact the 
results of the analysis. This is known as Modifiable Areal Unit Problem 
(MAUP) in spatial analysis [15,16]. Hietala and Stevens (1977) [14] 
therefore suggest changing the partition size to determine patterns 
for multiple partition options. Berry et al. (1980) [17] suggest the 
permutation test, which can use either grid-count values or point 
locations, and so can avoid the problems associated with defining a 
grid unit size. The permutation test uses as its test statistic the “average 
within-class distance” (Berry et al., 1980, p. 56) [17], and thus can test 
for significant associations between multiple classes. These methods 
detect global associations between artefact classes; i.e. they assess 
the overall density or the tendency of clustered-ness across the study 
area. However, as Premo (2004) [18] points out, being able to quantify 
the local spatial patterns (which enables us to identify the location, 
the extent and the intensity of each individual cluster) is important 
for the understanding and interpretation of archaeological material 
distributions. Methods for local spatial pattern detection used by 
Premo (2004) [18] include local Moran’s I and local G statistics, mainly 
for the purpose of detecting local spatial autocorrelation. These local 
statistics have a great potential for multiple archaeological applications, 
including that of multivariate analysis for identifying the association 
between artefact types or material types Premo (2004) [18].
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Hierarchical Clustering Methods in Spatial Analysis

With the development of data collection technology such as Global 
Positioning Systems (GPS), remote sensing, and vast amount of spatial 
data is becoming increasingly available. Yet their interpretation is not 
always straightforward, and dealing with the data to extract meaningful 
information can be difficult at times. Exploratory spatial data analysis 
(ESDA) offers an important first step for deriving information from 
large spatial datasets [19]. Cluster analysis is a spatial extension of 
ESDA used across a broad range of disciplines, including crime 
analysis, disease analysis, and archaeology [6,7,20]. Cluster detection 
techniques for point datasets include techniques that simply determine 
the presence of clustering, such as nearest neighbour indices [21], as 
well as techniques that identify the individual points within a cluster 
[6]. Early clustering techniques include the Geographical Analysis 
Machine [22] for identifying hot spots or areas of high intensity; while 
more recent techniques are designed to identify which points belong 
to a particular cluster—some of these techniques can be classified 
further into partitioning, hierarchical, and graph-based techniques 
[21,23]. Partitioning methods, such as k-means, group all points in the 
dataset into a user-defined number of groups [21]. In addition to the 
disadvantage of having to specify a number of groups, which can lead to 
bias in the analysis, partitioning techniques are unable to identify cluster 
shapes that are not convex [24,25]. Hierarchical methods are typically 
either top-down or bottom-up; for top-down methods, points are either 
grouped into a single cluster, then that cluster split according to some 
function to create two clusters, those clusters further split, and so on 
[26]. Bottom-up methods, such as the nearest neighbour hierarchical 
clustering technique use some function to group the individual points 
into a number of clusters, then proceed to group the primary-level 
clusters into secondary-level clusters and so on, until there is a single 
cluster. One advantage of hierarchical methods is that the user does not 
specify how many clusters to generate; however, user-defined criterion 
are required to tell the software when to stop clustering, or to define 
the initial clustering criteria [21,24,26]. A limitation is that each level 
of clustering depends on the previous level. Graph-based techniques 
are those that compute a graph, where the points are vertices and edges 
are lines connecting pairs of points, with edge lengths representing the 
proximity of pairs of points [26]. The minimum spanning tree (MST) 
and Delaunay diagram are examples of graphs used in clustering 
algorithms. Some cluster methods falling into this category include 
AMOEBA [23], AUTOCLUST [26], and VCM [5]. AMOEBA and 
AUTOCLUST are similar techniques based on the Delaunay Diagram. 
AMOEBA uses the global mean and standard deviation of all edge 
lengths in the graph, compared to the local mean of all edges connected 
to a single point, to determine a tolerance value. Edge lengths exceeding 
this tolerance value are removed from the graph such that the remaining 
connected points form the clusters. The algorithm is then reiterated to 
generate sub-clusters from the primary clusters, and so on until no 
more edges are present in the graph, producing hierarchical clusters. 
AMOEBA detects clusters of different density, and also non-convex 
clusters [23]. AUTOCLUST is like AMOEBA, but it compares local 
mean and standard deviation of edge lengths for a point to the average 
local standard deviation of all points to determine the tolerance [26]. 
Like AMOEBA, it succeeds in identifying clusters of different density 

and arbitrary shape [26]. Other similar algorithms for finding clusters 
have been presented by various authors [25,27].

Variable clumping method (VCM) is a hierarchical and graph-
based method that uses a minimum spanning tree (MST) as the 
graph of edges [5]. It detects “clumps” of points at varying distances 
by iterating through the ordered (by length) set of edges in the MST 
and using each length in turn as the radius of circles centered on the 
points, so that a set of points within connected circles constitute a 
clump [5]. The use of the variable radii enables detection of clumps at 
multiple scales. VCM also uses Monte Carlo simulation to determine 
which clumps at each radius are significant, and only includes these 
significant clumps in the final set [5,6]. All these clustering techniques 
offer many advantages but they also have limitations. Selecting an 
appropriate clustering technique requires defining the needs of the 
particular analysis to determine which limitations are acceptable. 
While there are hierarchical clustering approaches that would serve 
the needs of this analysis (e.g. AMOEBA, AUTOCLUST), they are 
mostly unavailable as a ready-to-use software package. CrimeStat is an 
exception, as a freely available software package that includes a nearest 
neighbour hierarchical clustering routine [21]. However, preliminary 
tests with this routine revealed several undesirable qualities such as 
the need to input parameters of the minimum number of points to 
include in the cluster, as well as the threshold distance [21], but these 
parameters may be difficult to estimate in a case where no context or 
the extent is available. Also, after running the clustering routine on a 
sample dataset (a subset of the Williston artefacts dataset), some of 
the member points within a cluster turned out to be closer to points 
in another cluster, which violates the primary goal of clustering as 
described above. Finally, each subsequent cluster level only clustered 
the clusters, so that outliers from the primary-level clustering remained 
isolated in the secondary-level clustering and so on. These attributes 
made it unsuitable for this study. To overcome these challenges, 
this study adopts the VCM approach. While it does require a user-
defined parameter, this is only needed for specifying the number of 
hierarchical levels to generate, which is constrained by the amount of 
complexity the analysis can handle (with more levels, the complexity 
increases). As detailed in the discussion below, it ensures that the 
distances between points within a cluster are minimised, through the 
use of natural breaks, and that any point within the cluster is closer to 
other points within the cluster than it is to points outside the cluster. 
Also, each cluster level is based on the full set of points, so outliers 
from the first cluster level are incorporated into higher-order clusters.

Methodology

Study Area

The study area of Williston Reservoir is located in northern British 
Columbia, Canada. It was created by the construction of the WAC 
Bennett Dam in the late 1960s, and is one of the largest reservoirs 
in the world [28]. Reservoir operation over the last 50 years has led 
to the exposure of primarily unvegetated large expanses of “beach”, 
made up of fine silts, clays, gravels, or sand. This area was heavily 
used by the First Nations peoples throughout history, and physical 
evidence of this use remains on the landscape in the form of exposed 
surface lithic artefacts and other cultural remains [29,30]. Millennia 
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Research Limited, an archaeological consulting firm, has conducted 
archaeological surveys of the inundation zone of Williston Reservoir 
annually since 2008. The surveyed area consists of discrete beaches, 
which are confined and delineated by the natural boundaries, usually 
in the forms of large creeks or rivers. Artefacts found during these 
surveys were recorded using handheld Global Positioning Systems 
(GPS) units, with an estimated average accuracy of ±5 m. The 
reservoir is composed of three main “reaches”, the northernmost of 
which is Finlay Reach, where the majority of the archaeological work 
has been done. Several of the core beaches of Finlay Reach (those 
that are most densely populated with artefacts) form the study area 
for this project (Figure 1). The archaeologically surveyed portion of 
these beaches totals over 68 km2, in which over 6,000 artefacts have 
been recorded for 2009-2011 alone. The environment of the study 
area and the characteristics of the archaeological remains present 
some difficulties for the management of the archaeological resource. 
In British Columbia, archaeological resources are protected by law, 
and the provincial Archaeology Branch maintains a registry of the 
archaeological sites [31]. Thus, for management purposes, a site 
definition is required. In this environment, with vast areas covered 
by scatters of artefacts without clearly defined features, defining the 
boundaries of the archaeological site can be challenging. Furthermore, 
the management decisions for archaeological resources are often 
dependent on their significance. As highlighted by Glassow (1977) 
[32], significance can be difficult to define. This is even more so if the 
unit of analysis is unclear because the extent and the boundary of the 
archaeological site is ambiguous. Ideally, the unit of analysis should 

be extracted from non-arbitrary grouping of associated archaeological 
materials, yet identifying the categories for such grouping can be very 
difficult, because of the sheer volume of the Williston Reservoir artefact 
dataset, which makes visual identification of patterns impractical. 
There are other challenges such as the lack of stratigraphic context, 
defined landforms, or geomorphological features; as well as the lack of 
intact archaeological features. In addition, the landscape is not static, 
which means that new artefacts are discovered each year in areas that 
had been previously surveyed. All of these factors pose challenges for 
interpretation, analysis and management of this vast archaeological 
resource.

Hierarchical Clustering

VCM is a spatial analytical method for detecting statistically 
significant multi-level clumps [5]. Circles of a variable-sized radius are 
drawn around each observed point, and any connected set of circles 
represents a clump. Clumps have some key properties including the 
clump radius (r) and the clump size (k), i.e. the number of connected 
circles. The “variable” part of VCM comes from varying the radius, 
so that the clumps identified at varying radii, and thus multi-scale 
clumps, are identified. The clumping state at a specific radius C(r) is 
defined by the number of clumps of size k at radius r, or N(k|r), so that 
C(r) = (N(2|r), N(3|r), ... , N(n|r)) [6]. Note that a clump of size one is 
not considered a proper clump [5]. A minimum spanning tree (MST) 
represents the distances between points, using the property of edge 
length (l), so that at radius r, any points connected by an edge with 
length l ≤ r form a clump. Because clumps will appear even in a random 
distribution of points, VCM also conducts a significance analysis to 
determine which clumps are significant [5,6]. A radius interval and 
maximum radius are specified to define a set of radii for the analysis. 
The set of clumping states of the observed points for this set of radii is 
then determined. Next, 10,000 simulations, using randomly generated 
point distributions and finding the MST for these point distributions, 
provide a frequency distribution of clumping states for the set of radii. 
From this distribution, using a significance level (α) of α = 0.05, the 
critical number for each clump size at each radius is determined from 
this frequency distribution. The null hypothesis (H0) states that the 
number of clumps of observed clump size k at a radius r will be less 
than or equal to the critical value for k and r. The results from the 
observed data are then compared to these critical values, and H0 is 
rejected where the observed number of clumps of size k at radius r 
is greater than the critical value [5,6]. A clustering method such as 
VCM is based on the MST of the points in the dataset. However, this 
study used a classification method to limit the number of distances at 
which to generate clusters. Individual line segments of the MST were 
classified by length using a natural breaks classification, to determine 
the distance thresholds at which each cluster level was defined. Thus, 
the number of classes chosen defines the number of levels in the 
resulting hierarchy. Figure 2 illustrates this process. In Figure 2a, the 
MST line segments have been classified into five classes. Note that the 
“Class 5” line is dashed – this is to indicate that this class is not used 
as a cluster level, as it would include all of the points in the dataset. 
Figure 2b shows the convex hulls of the resultant clusters. The process 
is cumulative, so that “Cluster level 2” includes all points connected by 
“Class 1” as well as “Class 2” line lengths.Figure 1: Study area beaches and artefact locations.
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The specific methodology used for the dataset in this study was 
to first separate the overall artefact dataset into individual datasets by 
beach. This was done so that the resulting clusters would reflect the 
distribution of artefacts on a particular beach. Some of the beaches 
are densely populated with artefacts, while others are more sparsely 
populated. As the beaches are well-defined by major landforms (creeks 
and rivers), it is sensible that they should be treated individually. 
An MST was generated for each dataset, and then classified using 
the Natural Breaks classification method, which is based on Jenks’ 
optimisation method. In essence, this clustering problem is very 
similar to the choropleth mapping problem discussed by Jenks 
(1967) [33] in that, while it may seem ideal to present every data 
value, or in the case of hierarchical clustering, every possible cluster 
level, a limited number of classes must be used in order to be able 
to understand and interpret the data. In that case, it is desirable that 
each class should contain very similar values, so that the within-class 
deviation is minimised.

Step 1: Select all of the primary-level cluster lines (i.e. lines that 
have a length less than or equal to the Class 1 breakpoint).

Step 2: Buffer the selected lines.

Step 3: Dissolve any overlapping buffer polygons.

Step 4: Spatially join the original points layer to the buffer 
polygons, so that they are assigned the buffer polygon ID, which 
becomes the “Cluster 1 ID”.

Step 5: Generate convex hulls, grouping by Cluster 1 ID.

Step 6: Repeat above steps for each cluster level, such that the each 
successively higher cluster level includes all line lengths smaller than 
the break value (i.e., each cluster includes points from lower-order 
clusters).

The resulting datasets included a point dataset with all of the 
artefacts assigned an ID value for each cluster level, as well as convex 
hulls of all of the clusters at each level, and a size one standard deviation 
ellipse for each cluster at each level.

Bivariate Autocorrelation Analysis for Object Type 
Relationships

Bivariate local Moran’s statistical analysis [34] is often used for 
describing the spatial correlation between the spatial distribution 
patterns of two variables; i.e. it is a local method that identifies the 
actual locations where significant spatial dependency was observed 
between the two variables. GeoDa software [35] was used to perform 
a multivariate LISA analysis on pairs of object types in order to 
determine if any statistically significant relationships exist between 
them locally or globally. Anselin (1995) [4] defines a LISA as any 
statistic that indicates the degree and significance of spatial clustering 
of similar values around each observation. In addition, the sum of 
LISA statistics for a set of observations must be proportional to a 
global statistic [4]. GeoDa uses the Moran’s I statistic for LISA analysis. 
The global Moran’s I value is an indicator of overall clustering within 
the dataset, while the local Moran’s I value indicates the locations 
of clusters [36]. A significant local association may occur that is not 
globally significant, or there may be patterns occurring locally that are 
opposite to the global trend [4]. When applied as a multivariate test 
of spatial correlation, the statistic compares values for one variable at 
a location to values for a second variable at neighbouring locations. 
Values are “standardised such that the mean is zero and standard 
deviation equals one” [33]. The standardised values at each observation 
location are compared to the spatially lagged, standardised values at 
neighbouring locations to produce a global multivariate Moran’s I 
[34]. The contributions of individual observations to this global value 
are also calculated to determine local multivariate Moran’s I statistics. 

A B

Figure 2: An illustrative example of hierarchical clusters; (a) classified MST lines connecting artefact point locations, (b) hierarchical clusters shown as convex hulls surrounding the original 
artefact point locations.
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These values can then be compared to the values expected under a 
scenario of complete spatial randomness in order to determine the 
significance of the relationship between the two variables, both 
globally and locally [34]. This is done by calculating the Moran’s 
I for a large number of randomised permutations, in which one of 
the variables is kept static, while the other is randomly reallocated 
amongst the observations. Running several thousand random 
permutations produces an indicator of how extreme, and therefore 
how significant, the observed values are [4]. Thus, within the GeoDa 
multivariate LISA analysis, it is possible to obtain both global and 
local indicators of significant spatial association between two different 
variables. For each pair of variables a pseudo-significance level for 
the calculated local Moran’s I statistic was determined using 9,999 
randomised permutations. The results, including the local Moran’s I 
value for each cluster with neighbours, the spatial association type, 
and the significance p-value for the association, were saved to a table.

The outcome of the significance test of LISA classifies individual 
cluster location into four different categories:

High-High

If the LISA statistic is statistically significant, takes a positive value, 
and the standardised count/value of object type A is positive, then 
both the object type A and the object type B are significantly high.

Low-Low

If the LISA statistic is statistically significant, takes a positive 
value, and the standardised count/value of object type A is negative, 
then both the object type A and the object type B are significantly low.

Low-High

If the LISA statistic is statistically significant, takes a negative 
value, and the standardised count/value of object type A is negative, 
then the object type A is low but the object type B is high.

High-Low

If the LISA statistic is statistically significant, takes a negative 
values, and the standardised count/value of object type A is positive, 
then the object type A is high but the object type B is low.

Analysis

In the analysis, a two-tier cluster levels were used for testing 
the spatial patterns of artefacts at different scales. The primary-level 
clusters were combined into a single dataset, and the secondary-level 
clusters were combined into another dataset. The object types that were 
used in the analysis are listed in Table 1. Some object type categories 
had very few members to the extent that they would not sustain robust 
analysis and were therefore excluded from the analysis. One very large 
category of object types, Flake Debitage, was also excluded because 
these items were often recorded only cursorily, making the data for 
this object type unreliable for use in this analysis.

GeoDa was used for generating a binary spatial weights matrix, 
in which a distance cut-off was applied to determine whether each 
cluster is considered a neighbour of another polygon. Clusters falling 

within the distance band are counted as neighbours in the analysis, and 
those falling outside the distance band are not considered [35]. GeoDa 
automatically calculates a distance that ensures that all clusters have at 
least one neighbour. However, the default distance turned out to be too 
large to provide archaeologically meaningful results, and it was adjusted 
through an exploratory process to calibrate it for localised analysis 
that also retains sufficient neighbours for most locations. Through this 
process, the primary-level clusters were set with the distance threshold 
of 250m, and the secondary-level clusters at 500 m. The resulting weights 
matrix for primary-level clusters had some isolated, neighbourless 
locations (Figure 3a). For the secondary-level clusters, every location 
had at least one neighbour (Figure 3b). This second level of analysis 
provides a more regional view of the relationships between object types, 
while the first level provides a more localised view.

Of the 20 different relationships between object types tested at the 
first cluster level, three global significant relationships were discovered, 
and significant local associations were present in all of the comparisons. 
Amongst the statistically significant global patterns which emerged 
from the analysis was a positive correlation between Alberta Points 
and Macroblades. The negative correlations observed between Impact 
Fractured Points and Scrapers, and Impact Fractured Points and Flake 
Tools were statistically significant. The secondary-level cluster analysis 
did not result in many global significant associations; however, a 
positive correlation between Scraper object types and Point object 
types was significant. The secondary-cluster level results provide a 
more regional summary of the relationships between object types. 
None of the significant primary-level global associations were present 
as global associations for secondary-level clusters. Table 2 summaries 
the significant local relationships for primary-level clusters by their 
spatial association types, and Table 3 offers the same for secondary-
level clusters. The association types are perhaps the most informative 
with regards to the nature of the relationships, as the actual Moran’s I 
value is not necessarily easy to interpret on its own.

Object Type #Level 1 Clusters #Level 2 Clusters

Macroblade 74 61

Flake Tool 321 235

Impact Fractured Point 33 32

Cody Point (also included in point category) 30 29

Biface Preform 43 38

Scraper 379 211

Point (excludes impact fractured points) 227 167

Biface 119 106

Core 85 77

Microblade core 20 20

Microblade 35 32

Spall 71 63

Battered Biface 14 14

Hammer Stone 14 11

Alberta point (also included in point category) 6 5

Table 1: List of object types used in the analysis, with number of clusters for each object type.
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Maps of selected variable pair results display some interesting 
trends (Figures 4-7). For example, Figure 4a shows the association 
between Flake Tool and Scraper object types for primary-level clusters. 
While there are many High-High associations (as seen in Table 2), most 
of these are grouped in two locations at the north end of the study area. 
However, when the secondary-level cluster map for this association 

is compared (Figure 4b), these groupings have disappeared. Instead, 
new locations of High-High associations appear at this different scale. 
For the association between Point and Scraper (Figure 5), a similar 
pattern shows, with most of the High-High associations for primary-
level clusters (Figure 5a) grouped in two locations at the north end of 
the study area. Note that the southern of these two High-High groups 

A B

Figure 3: Detected artefacts clusters (a) distribution of primary-level clusters with the omission of the neighbourless clusters, (b) distribution of secondary-level clusters.

Core Variable Spatially Lagged Variable #Of Clusters with significant Relationship

High-High Low-Low Low-High High-Low

Battered Biface Flake Tool 2 73 117 5

Battered Biface Hammer Stone 1 511 78 12

Battered Biface Scraper 1 54 150 3

Biface Flake Tool 8 71 109 29

Biface Preform Scraper 2 72 117 13

Macroblade Microblade 1 227 165 43

Microblade Microblade core 0 389 84 30

Core Flake Tool 2 74 106 20

Flake Tool Scraper 20 47 119 85

Point Scraper 13 54 130 66

Alberta Point Macroblade 3 104 178 2

Cody Point Macroblade 3 100 182 21

Impact Fractured Point Flake Tool 0 73 120 17

Impact Fractured Point Point 1 163 117 14

Impact Fractured Point Scraper 0 58 150 19

Scraper Point 11 144 103 115

Scraper Impact Fractured Point 3 182 58 240

Scraper Flake Tool 17 66 95 82

Spall Flake Tool 3 70 117 21

Spall Scraper 6 56 140 14

Table 2: Significant results from primary-level multivariate local Moran's I analysis.
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A B

Figure 4: Significant associations between Flake Tool and Scraper object types for (a) primary-level clusters, and (b) secondary-level clusters (insignificant associations and neighbourless clusters omitted).

Core Variable Spatially Lagged Variable #Of Clusters with significant Relationship

High-High Low-Low Low-High High-Low

Battered Biface Flake Tool 2 77 45 1

Battered Biface Hammer Stone 1 120 36 4

Battered Biface Scraper 2 51 25 1

Biface Flake Tool 2 69 42 9

Biface Preform Scraper 1 53 25 2

Macroblade Microblade 6 103 111 15

Microblade Microblade core 7 66 116 15

Core Flake Tool 2 68 43 13

Flake Tool Scraper 7 44 19 19

Point Scraper 2 47 25 12

Alberta Point Macroblade 1 119 60 0

Cody Point Macroblade 1 119 64 4

Impact Fractured Point Flake Tool 1 77 43 3

Impact Fractured Point Point 2 230 112 7

Impact Fractured Point Scraper 0 49 28 3

Scraper Point 39 185 77 51

Scraper Impact Fractured Point 0 49 28 3

Scraper Flake Tool 12 52 32 26

Spall Flake Tool 3 73 41 5

Spall Scraper 1 54 26 3

Table 3: Significant results from secondary-level multivariate local Moran's I analysis.
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Figure 5: Significant associations between Point and Scraper object types for (a) primary-level clusters, and (b) secondary-level clusters.

A B

Figure 6: Significant associations between Battered Biface and Hammerstone object types for (a) primary-level clusters, and (b) secondary-level clusters.
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for Point and Scraper is in the same location as one of the Flake Tool 
to Scraper primary-level cluster groups. Again, these significant 
associations disappear at the secondary-cluster level (Figure 5b). At 
the first cluster level, Battered Bifaces and Hammerstones do not 
tend to occur together (Figure 6a), except for a single High-High 
cluster. At the secondary-cluster level, this High-High association has 
disappeared, and a new High-High association location has appeared, 
towards the northern portion of the study area (Figure 6b). It is 
interesting to note that this also occurs in the same location as one of 
the High-High groupings seen in both Figures 4a and 5a. Elsewhere 
in the reservoir, the general non-association trend between Battered 
Bifaces and Hammerstones holds at the secondary-cluster level. Other 
trends of interest include the globally significant positive correlation 
between Alberta Points and Macroblades. When the local associations 
are viewed on the map (Figure 7a), all of the High-High associations 
are grouped in one area, towards the center of the study area. The 
primary-level global negative correlation between Impact Fractured 
Points and Flake Tools is also visible in the local association types, as 
there are no High-High associations (Figure 7b). At the secondary-
cluster level, the global association between Scraper and Point object 
types is apparent as several groups of High-High associations (Figure 
7c). However, there are also several significant High-Low locations, 
most notably the very large group of these two association types which 
occurs in the northern part of the study area.

Discussion

Key results of the LISA analysis include the four global significant 
associations, between Alberta Points and Macroblades, Impact 
Fractured Points and Flake Tools as well as Scrapers, and Scrapers to 
Points. A number of interesting local patterns were also discovered, 
including the suggested High-High groupings seen at the same 
location for multiple object-pairs (Figures 4-6), and scale differences 

A B C

Figure 7: Significant associations between (a) Alberta Point and Macroblade object types for primary-level clusters, (b) Impact Fractured Point and Flake Tool object types for primary-level 
clusters, and (c) Scraper and Point object types for secondary-level clusters.

in these local patterns as highlighted by the use of two different levels 
of clustering. The significant relationships may have a number of 
explanations. The negative correlations between Impact Fractured 
Points and Scrapers/Flake Tools suggest that the Impact Fractured 
Points are hunting losses, rather than retrieved from a kill and then 
discarded at a campsite or butchering site. If the latter were the case, 
they would be expected to be found more frequently in association with 
Flake Tools and Scrapers, both of which object types would typically 
be found at camp or butchering locations. Furthermore, the Impact 
Fractured Point to Scraper results for secondary-level clusters. None 
of the clusters have a significant local High-High relationship at this 
level and, while not globally significant, this seems to follow the trend 
of the primary-level cluster results, thus implying that this relationship 
may persist at this scale across the site. The global relationship between 
Scrapers and Points at the secondary-cluster level was composed of 
several distinct groupings of local High-High associations. These may 
suggest significant use areas, such as regularly used butchering sites or 
campsites. However, perhaps of equal or greater interest is the area with 
a large grouping of High-Low significant associations, which oppose 
the global trend of positive correlation, suggesting that something 
quite different may be occurring in this particular region. The Alberta 
Point to Macroblade global association could indicate that these items 
were used contemporaneously, thus providing a possible scenario of 
temporal patterning. Though this association is not significant at the 
secondary-cluster level, even at this scale there are no clusters with 
high numbers of Alberta Points and low numbers of Macroblades 
and one second level cluster retains a significant local High-High 
association, suggesting that Alberta Points are not typically found far 
from Macroblades. Other local relationships observed have indicated 
some interesting trends that may have a number of explanations. The 
groups of High-High clusters seen in the same locations for several of 
the variable pairs (Figures 4-7) suggest that these are not likely to be 
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randomly strewn artefacts but may be an indicator of some important 
activity areas, such as camp locations, though further research would 
be required to confirm this hypothesis. Hierarchical clustering has 
proven to be an effective tool for comparing the change in clusters 
over time, as well as the discovery of associations between different 
artefact types across multiple scales. The object type analysis revealed 
significant patterns in the association between different artefact types 
at multiple scales, and while it is not possible to draw a definitive 
conclusion of exactly what these relationships mean in terms of 
landscape use, they suggest a number of interesting hypotheses of 
possible uses and provide direction for further studies.
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