Supplement Information

Electrochromic devices based on viologen derivatives with multiple color changes

7.62 77.69 77.69 77.69 77.69 77.69 77.69 77.69 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 77.73 75.75 75

f e с d g b NH₂ h а g i d b | h а lef c 2.00H 00. 00.0 00. 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Figure S5: ¹H NMR spectrum of compound 5. -5.43 $\begin{array}{c} 7.01 \\ 6.99 \\ 6.88 \\ 6.81 \\ 6.81 \\ 6.79 \\ 6.79 \\ 6.20 \\ 6.20 \end{array}$

i

0.0

(2):64 (2):63 (2):63 (2):63 (2):63 (2):63 (2):63 (2):63 (2):63 (2):63 (2):63 (2):63 (2):63 (2):64 (2

Figure S10: High Resolution Mass Spectrometry of IV.

Figure S16: High Resolution Mass Spectrometry of BV.

2. Fabrication of Electrochromic device

Figure S17: Electrochemical impedance spectroscopy (EIS) of (a) 2IV-based rigid ECD, (b) 2PV-based rigid ECD and (c) 2BV-based rigid ECD and (d) the corresponding analog equivalent circuit.

3. Optoelectrochemical properties of viologen derivatives

Figure S18: Cyclic voltammograms of (a) IV, (b) PV and (c) BV in PC solution containing 0.1 M TBAP at a scan rate of 50 mV/s.

Figure S19: UV-vis absorption spectra of (a) IV, (b) PV and (c) BV in PC solution.

Table S1: Optoelectrochemical properties of viologen derivatives

Compounds	λ_{\max} (nm)	$\lambda_{_{ m edge}} \ (nm)$	E ^{opt} (eV)	E _{red} onset (V)	E _{HOMO} (eV)	E _{LUMO} (eV)
IV	361	496	2.50	-0.64	-6.26	-3.76
PV	394/424	564	2.20	-0.19	-6.41	-4.21
BV	333	433	2.86	-0.43	-6.83	-3.97

Figure S20: CVs of (a) IV-based rigid ECD, (b) PV-based rigid ECD and (c) BV-based rigid ECD at a scan rate of 50 mV/s.

Figure S21: Spectroelectrochemistry of (a) IV-based rigid ECD, (b) PV-based rigid ECD and (c) BV-based rigid ECD under different applied voltages and the image of corresponding devices.

Figure S22: Current-time curves of (a) IV-based rigid ECD, (b) PV-based rigid ECD and (c) BV-based rigid ECD (switched upon voltages between 0.0 V and -1.4 V with a switching interval of 120 s).

Figure S23: Properties in write-erase ability of (a) 2IV-based flexible ECD, (b) 2PV-based flexible ECD and (c) 2BV-based flexible ECD.

Figure S23: Properties in write-erase ability of (a) 2IV-based flexible ECD, (b) 2PV-based flexible ECD and (c) 2BV-based flexible ECD.

ECDs	Optical contrast (%)	Response time (s)	Coloring efficiency(cm ² /C)	Stability (%)	
IV (ITO DET)	22.5 (5(4 mm))	46.0 (t _c)	120 67 (564mm)	51.1 (1000 cycle)	
IV-(IIO-PEI)	55.5 (564 IIII)	4.9 (t _b)	129.67 (5641111)		
PV (ITO PET)	37 4 (564 pm)	84.2 (t _c)	87 78 (564pm)	97.6(1000 cycls)	
rv-(110-rE1)	37.4 (304 IIII)	9.9 (t _b)	87.78 (3041111)	97.0 (1000 Cycle)	
BV (ITO DET)	45 8 (466 pm)	52.9 (t _c)	107.22 (466nm)	72.7(1000 cycle)	
BV-(110-111)	45.8 (400 mm)	7.5 (t _b)	107.22 (4001111)	72.7 (1000 Cycle)	
IV (ITO glass)	42 4 (582 pm)	22.0 (t _c)	197 84 (582nm)	38.9 (1000 cycle)	
	42.4 (362 1111)	4.1 (t _b)	197.64 (3621111)	56.9 (1000 Cycle)	
DV (ITO glass)	44 1 (584 pm)	35.2 (t _c)	108 70 (584pm)	01.8 (1000 gycla)	
r v-(110-glass)	44.1 (384 1111)	2.4 (t _b)	198.70 (3841111)	91.0 (1000 Cycle)	
BV (ITO glass)	44.0 (568 pm)	25.8 (t _c)	201 50 (568nm)	88.8 (1000 cycle)	
DV-(11O-glass)	44.0 (308 IIII)	$3.2 (t_{\rm b})$	201.50 (5081111)		

Table S1 Electrochromic properties of ECDs based on IV, PV and BV.