
Journal of Clinical Research and Medicine
Volume 5 Issue 5Research Open

J Clin Res Med, Volume 5(5): 1–20, 2022 

Research Article 

Astrocyte, Lipid Metabolism in Alzheimer’s Disease 
and Glioblastoma
Xu Zhang*, Ping Lu and Xiaorong Shen

Institute for Reproductive Health, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China

*Corresponding author: Xu Zhang, Institute for Reproductive Health, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China

Received: September 14, 2022; Accepted: September 20, 2022; Published: September 26, 2022

Abstract

The brain is a central key organ of the body containing the second highest lipid content only after adipose tissue. Lipids as the main structural components 
of biological membranes play important roles in a vast number of biological processes within the brain such as energy homeostasis, material transport, 
signal transduction, neurogenesis and synaptogenesis, providing a balanced cellular environment required for proper functioning of brain cells. Lipids 
and their metabolism are of great physiological importance in view of the crucial roles of lipids in brain development and function. Astrocytes are the 
most abundant glial cells in the brain and involved in various processes including metabolic homeostasis, blood brain barrier maintenance, neuronal 
support and crosstalk. Disturbances in lipid metabolism and astrocytic functions may lead to pathological alterations associated with numerous 
neurological diseases like Alzheimer’s Disease (AD) recognized as the most frequent cause of dementia leading to major progressive memory and 
cognitive deficits as well as Glioblastoma (GBM) known as the most aggressive malignant brain tumor with a poor prognosis. Herein, we not only 
review the level and role of altered lipid metabolism in correlation with astrocytic function and astrocyte-neuron crosstalk in AD and GBM, but also 
discuss important lipid-related metabolites and proteins participating in possible mechanisms of pathologically dysregulated lipid metabolism, offering 
potential therapeutic targets in targeted molecular therapies for AD and GBM.
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Introduction

The brain is a central and pivotal organ highly enriched in 
lipids (constituting 50% to 60% of brain dry weight) [1], the major 
biomacromolecules characterized with poor water-solubility and 
good solubility in non-polar organic solvent, and is regarded with 
the second highest lipid content next to the adipose tissue [2]. Lipids 
are a class of fatty substances differing in overall structure, molecular 
weight, head group configuration, carbon-carbon bond formation and 
other factors, among which fatty acids, phospholipids, sphingolipids, 
sterol lipids and triglycerides are the five main brain lipid classes [3], 
serving as basic structural components of biological membranes and 
participating in a broad variety of physiological events, including 
chemical energy generation and storage, substance transport, cellular 
signaling, neural differentiation, axonal regeneration, synaptogenesis, 
synaptic plasticity and brain development [4-14].

The brain consists of neurons and non-neuronal cells such as glial 
and vascular epithelial cells, of which astrocytes represent the most 
abundant glial cells [15,16]. Astrocytes mediate diverse biological 
activities under physiological conditions, including structural and 
energy support for neurons [17,18], neuronal development and 
maintenance [19,20], formation, function and plasticity of synapses 
[21,22], modulation of synaptic transmission [22], metabolomic 
homeostasis [23] as well as integrity of the Blood-brain Barrier 
(BBB) [24,25] which is a semipermeable membrane regulating 
solute exchange between blood and brain parenchyma to maintain 

CNS homeostasis and function and partially separating local lipid 
metabolism of the brain from that of the body [25-33]. Apart from 
the well-known enzymatic capacity of glycogenesis and glycolysis [34-
38], equipment of lipid metabolism also exists in astrocytes, providing 
membrane components for neurons and other glial cells [39,40] and 
playing fundamental roles in astrocyte function including membrane 
fluidity, energy generation and intercellular signaling. Emerging 
evidence has shown that astrocytic usage of lipids stored in droplets 
via mitochondrial β-oxidation fulfills crucial energy-providing and 
neuroprotective roles in the brain [18,41], whereby disruption in 
lipid metabolism, structure and function of astrocytes may lead to 
pathogenic mechanisms underlying an array of neurological diseases.

Lipid Classification in the Brain

Fatty Acids

As one of the most well-known lipid class, Fatty Acids (FAs), the 
essential monomeric constituents of all lipids, account for almost 20% 
of the energy source through oxidation, for which astrocytes as the 
major provider of fatty acid β-oxidation may be the essential place 
[42-44]. Additionally, fatty acids can also be utilized by astrocytes 
for producing ketone bodies under particular conditions (e.g. 
ischemia), serving as a substrate for neuronal energy production-
related Tricarboxylic Acid (TCA) cycle [45]. Fatty acids permeate the 
Blood-brain Barrier (BBB) via passive (dissociation from albumin 
carriers, binditheng to luminal membrane which belong to endothelia 
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cells, ATP-independent release and entrance into the cytosol) and/
or protein-mediated transport (e.g. Fatty Acid Transport Proteins 
(FATPs), fatty acid translocase/CD36 (FAT/CD36), Fatty Acid 
Binding Proteins (FABPs) and caveolin-1) [46,47]. Fatty acids can 
be further divided into unsaturated and saturated fatty acids, from 
which the former subclass contains Monounsaturated Fatty Acids 
(MUFAs) and Polyunsaturated Fatty Acids (PUFAs), while the latter 
comprises palmitic acid, stearic acid and others [48,49]. PUFAs are 
highly enriched in the brain, with 3- to 4-fold level over other tissues 
[50,51]. What’s more, essential PUFAs play key roles in brain activity 
and development [52,53], in which the ω-3 Docosahexaenoic Acid 
(DHA) are particularly involved in synaptogenesis, neurogenesis and 
neuroprotection in the brain [54-57].

Phospholipids

As the most abundant constituent of major categories of 
membrane lipids [58,59], Phospholipids (PLs) generally consist of two 
hydrophobic tails of fatty acids differing in length and a backbone-
attached hydrophilic phosphate group [60-62].

Phospholipids, which are synthesized in the mitochondria 
and Endoplasmic Reticulum (ER) tracing from diacylglycerol and 
phosphatidic acid, spontaneously aggregate into the formation 
of bimolecular layers in aqueous environments on account of 
configuration and amphipathic property [63]. Phospholipids can 
be classified into glycerophospholipids and phosphosphingolipids, 
of which glycerophospholipids are the prominent glycerol-based 
class of lipid molecules which can be further subclassified into 
subtypes such as Phosphatidic Acid (PA), Phosphatidylcholine 
(PC), Phosphatidylethanolamine (PE), Phosphatidylglycerol (PG), 
Phosphatidylinositol (PI) and Phosphatidylserine (PS) on the basis 
of variation in hydrophilic head groups and participate in a variety 
of physiological activities in the brain [59,64,65]. Moreover, fates of 
brain cells are influenced by exposure to different phospholipids, such 
as differentiation of neural cells into astrocytes was promoted and 
inhibited with PE and PC treatment, respectively [66].

Sphingolipids

Sphingolipids containing sphingoid bases (also known as long-chain 
bases) and a set of aliphatic amino alcohols that includes sphingosine 
are mainly synthesized in Endoplasmic Reticulum (ER). Sphingolipids 
comprise a large group of lipid molecules through compounding with 
different functional groups, such as ceramide (functional group of single 
hydrogen atoms) and Sphingomyelin (SM) (functional groups including 
phosphocholine) with regards to structural composition, functioning 
as building blocks of membranes (e.g. lipid rafts) [67] and playing 
fundamental roles in formation and regulation of synapse structure and 
function [68], cell recognition, signal transmission and inflammatory 
regulation of astrocytes [69-72]. Besides, sphingolipid metabolites have 
also been discovered to exert regulatory roles in autophagy, cancer cell 
growth, response to DNA damage and inflammation [73-75].

Sterol Lipids

Sterol lipids include numerous organic molecules, of which 
cholesterol with four hydrocarbon rings is the main part. Cholesterol 

can be synthesized in ER by all nucleated cells, while over 70% of total 
body cholesterol are provided by the diet [76], namely the cholesterol 
absorbed in the gut transfers into the liver and then spreads through 
the body. What is noteworthy is that the brain, unlike other organs, 
makes its own cholesterol because of effective prevention of peripheral 
cholesterol exchange between brain tissue and plasma cholesterol-
carrying lipoproteins by the BBB [77-79]. In brain tissue, de novo 
synthesis of cholesterol is mainly performed in astrocytes which 
are considered as the main cholesterol producer in the brain [80], 
though the majority of sterol is synthesized in oligodendrocytes in 
developing brain and has an association with myelination [81] and 
oligodendrocytes, besides, cholesterol can also be synthesized in many 
other cell types [82-84]. Apart from de novo synthesis [85], brain cells 
are able to acquire cholesterol from neighboring cells through the 
absorption of cholesterol-laden lipoproteins (e.g. Apolipoprotein E 
(APOE)) in a receptor-mediated way [86,87], in which lipoprotein 
synthesis for cholesterol transport occurs in astrocytes [88]. With 
abundant existence in myelin and lipid membranes [81], cholesterol 
fulfills vital roles in the brain, including BBB integrity, organization 
of lipid rafts (discrete microdomains present in the external leaflet of 
plasma membrane), regulation of cell membrane flexibility (through 
interaction with neighbouring phospholipids) and localization and 
activity of diverse membrane proteins (e.g. membrane receptor and 
transporter proteins), axonal guidance, formation and maintenance 
of synapses and dendrites, synaptic membranerelated fluidity and ion 
channel function, glucose transport, intracellular signaling and other 
important neuronal functions [84,89-103].

Triglycerides

As the major form of FA deposition and the optimal form of FA 
triesters of glycerol, Triglycerides (TGs) are essential ingredients of 
glycerolipid synthesis by assembling with other glycerol molecules 
[104]. Triglycerides mainly generated in the adipose tissue and liver 
can reach other tissues with the package into lipoproteins containing 
a hydrophilic exterior and a hydrophobic lipid core, including 
chylomicrons, Very-lowdensity Lipoproteins (VLDL), low-density 
lipoproteins (LDL), very-high-density lipoproteins (VHDL) and high-
density lipoproteins (HDL) only which can cross the BBB [105-108]. 
Additionally, apolipoprotein E (ApoE) and apolipoprotein J (ApoJ), 
the most abundant apolipoproteins synthesized in astrocytes, serve 
as receptor ligands on HDL [109-111] and play fundamental roles in 
lipid metabolism-associated structural support, enzyme activity and 
substrate delivery [110,112-114].

Astrocyte-Neuron Coupling of Lipid Metabolism

In humans, the brain representing, on average, merely 2% of 
total body weight consumes approximately and over 20% of energy 
substrates during quiet waking and diverse tasks, respectively 
[115,116], which depends on relatively efficient metabolic coupling 
between astrocytes and neurons. Physiologically, astrocytes are 
considered primarily as glycolytic cells with a large enzymatic 
capacity for glycolysis [115,117,118], whereas neurons are 
predominantly oxidative [119-121]. Besides the glucose metabolism 
in which astrocytes participate in the delivery of blood-derived 
glucose to neurons as an obligatory energy fuel, glycogen storage and 
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activitydependent L-lactate production as a metabolic substrate for 
neurons during aerobic glycolysis [115,122-124], astrocytes-neuron 
coupling of lipid metabolism has also been suggested to occur 
as a response to neuronal activity in protection of neurons from 
lipotoxicity [125,126]. This is a mechanism proposing that L-lactate-
derived de novo synthesis of free fatty acids (FFAs) in overstimulated 
neurons is triggered during astrocyte-neuron L-lactate shuttle 
(ANLS), resulting in excess FFAs in association to lipotoxicity-
related reactive oxygen species (ROS) and lipid peroxidation chain 
reaction [127], peroxidized FAs with devastating effects [127] 
are then transferred from hyperactive neurons to astrocytes via 
apolipoprotein E-positive lipid particles, where they are directly 
stored in lipid droplets (LDs) [125,126,128] which are dynamic 
organelles possessing a core of neutral lipids (e.g. cholesterol 
esters (CEs) and triacylglycerides (TAGs)), influencing fatty acid 
breakdown for energy production [129] and buffering excess FFAs 
to prevent lipid accumulation [130] as well as utilized as an energy 
substrate in β-oxidation [126] (Figure 1).

AD

With the worldwide increase in longevity, Alzheimer’s disease 
(AD) as the most common form of senile dementia is rapidly 

becoming a major health problem [131,133]. AD is a devastating 
irreversible neurodegenerative disease clinically defined by memory 
loss, neuropsychiatric abnormalities, cognitive impairment, behaviour 
deficits and progressive decline of self-care capacity [134-136] as 
well as pathologically characterized by extracellular amyloid-ß (Aβ) 
plaques and intracellular neurofibrillary tangles (NFTs) composed 
of hyperphosphorylated microtubuleassociated protein tau [137-
139]. Moreover, accumulation of lipid granules in glia, besides 
notorious Aβ deposition and tau aggregates, was noticed with the 
examination of Auguste Deter’s brain (the first described AD patient), 
initially establishing a possible involvement of perturbations of lipid 
metabolism in AD pathology [140,141]. Altered lipid metabolism has 
also been further described with important roles in AD pathogenesis 
[142-151].

Recent AD pathology-related lipidome studies have 
demonstrated changes in content of numerous lipids (Table 1). 
Substantial differences in fatty acid levels were observed in AD brain 
tissues [152,153], including a decrease in levels of docosahexaenoic 
acid (DHA) present in frontal cortex gray matter [154] and 
hippocampus [155] to which damage correlates with impaired 
learning and memory [156], suggesting a dysregulation of fatty acid 

Figure 1: Astrocyte-Neuron coupling of lipid metabolism. Excess fatty acids produced in hyperactive neurons are transferred via lipid particles associated with APOE to astrocytes, where fatty 
acids are delivered to lipid droplets after endocytosis of neuron-derived lipid particles, detoxified as a means of neuron protection under conditions of enhanced activity as well as consumed by 
mitochondrial oxidation (e.g. β-oxidation). FAs, fatty acids; APOE, apolipoprotein E; LDs, lipid droplets.
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metabolism and may potentially marking this neurodegenerative 
disease [157]. Cholesterol accumulation observed in senile plaques 
and influenced brain regions from AD patients [158] has been 
reported in association with region-specific synapse loss [159]. A 
causal relationship between hypercholesterolemia and dysfunctional 
cholinergic system, cognitive impairments and pathology of amyloid 
and tau protein has been also demonstrated [160,161], further 
supporting important roles of disturbed cholesterol metabolism 
in AD. What’s more, detection of elevated cholesterol esters was 
performed in lipid raft-like mitochondria-associated ER membranes 
(MAMs) [162] of which hyperactivity leads to cholesterol retention 
and synapse loss and correlates with cognitive deficits [163] and 
in which accumulated cleaved products of Amyloid Precursor 

Protein (APP) cause mitochondrial dysfunction, interruption of 
cellular lipid homeostasis and membrane lipid alterations generally 
observed in AD pathogenesis [164,165]. Mitochondrial dysfunction, 
accompanied with increased oxidative stress, in neurons induces a 
lipid transfer to nearby astrocytes in which lipid droplets accumulate, 
in turn, mitochondrial dysfunction in glial cells can be caused by 
accumulation of peroxidated lipids and oxidative stress, contributing 
to neurodegenerative processes [166-168]. Growing evidence has 
supported nonnegligible roles of phospholipids and sphingolipids 
in AD pathogenesis and progression, with studies reporting that 
phospholipids and sphingolipids, together with acylglycerols, fatty 
acids and sterol lipids, present significant content changes in AD 
brain tissues [154,169-175].

Lipids Tissue Changes in AD Ref 

Fatty acids Omega-3 fatty acids 

DHA 

Brain; CSF; Circulation ↓ [176-180] 

MFG ↑ [179] 

FCx ↓ [181] 

EPA 
Brain; Circulation ↓ [180] 

MFG ↓ [179] 

DPA Brain ↑ [182] 

ALA Plasma ↑ [183] 

Omega-6 fatty acids 
AA 

Brain; CSF ↑ [177,184,185] 

MFG ↓ [179] 

HPC ↓ [186] 

LA Brain; Plasma ↓ [179,187] 

Saturated fatty acids  Brain; CSF ↑ [176] 

Eicosanoids PG Brain ↑ [188] 

Phospholipids 

Phosphatidylcholine (PC) 

Total PC lipids Brain ↓ [189] 

PC-EPA CSF ↓ [190] 

PC-DHA Plasma ↓ [191] 

PC-EPA Plasma ↓ [191] 

Phosphatidylethanolamine 
(PE) 

Total PE lipids HPC ↓ [186] 

PE-SA HPC ↓ [192] 

PE-OA HPC ↓ [192] 

PE-AA HPC ↓ [192] 

PE-DHA HPC ↓ [192] 

Phosphatidylserine (PS) Total PS lipids Occipital lobe; Inferior 
parietal 

↓ [193] 

lobule 

Sphingolipids 
Ceramides (CM) Total CM lipids Brain ↑ [194] 

Sphingomyelin (SM) Total SM lipids CSF ↓ [195] 

Triglycerides 
 Total TG lipids Serum ↓ [196] 

 Polyunsaturated TG Brain ↓ [197] 

Sterol lipids 

Cholesterol  Brain ↓ [198] 

Cholesterol precursors  Brain ↑ [198] 

Total oxidized cholesterol  Brain ↑ [199] 

Table 1: Summary of lipid changes in AD.

PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine; CM, ceramides; SM, sphingomyelin; TG, triglyceride; AA, arachidonic acid; ALA, alpha-linolenic acid; DHA, 
docosahexaenoic acid; DPA, docosapentaenoic acid; EPA, eicosapentaenoic acid; LA, linoleic acid; OA, oleic acid; SA, stearic acid; PG, prostaglandin; CSF, cerebral spinal fluid; FCx, frontal 
cortex; HPC, hippocampus; MFG, medial frontal gyrus;↑; increased from control ↓; decreased from control.
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APOE

In comparison with early-onset familial AD (EOFAD), late-
onset AD (LOAD) accounts for approximately 95% of all AD cases 
[200,201], in which genetic predisposition, after aging, plays major 
roles in the onset of AD. As the strongest risk factor for LOAD, 
apolipoprotein E (APOE) is the main lipoprotein in the brain and 
plays pivotal roles in brain lipid metabolism, membrane remodelling 
and neuronal growth and repair [202-206]. APOE mainly produced 
by astrocytes is released into extracellular space where essential lipids 
(e.g. cholesterol) are delivered to neurons adopting APOE-bound 
cargo through APOE receptors expressed on the neuronal surface 
[202]. In addition to the capacities of Aβ binding and influencing Aβ 
aggregation and clearance [204,207], APOE participates in indirect 
regulation of Aβ metabolism through interactions with receptors 
(e.g. low-density lipoprotein receptorrelated protein 1 (LRP1)) 
[206,208-213]. Critical and isoform-specific role of APOE has also 
been demonstrated in formation of intraparenchymal Aβ deposits in 
amyloid precursor protein (APP) transgenic mice [214-217]. APOE 
exists with 3 different alleles namely APOEε2, APOEε3 and APOEε4, 
translating to 3 protein isoforms termed APOE2, APOE3 and 
APOE4, of which APOE4 present in approximately 14% of worldwide 
populations [205,218] is the most prevalent genetic risk factor for 
AD [219-222]. A single amino acid difference between APOE3 
and APOE4 (Cys 112 Arg) brings about a conformational change 
influencing the binding to Aβ, lipids and apolipoprotein receptors 
[223]. APOEε2 considered as a protective genetic factor associated 
with reduced risk for AD and late age at onset [219,224] has been 
reported to orchestrate differences in lipidome and transcriptome 
profiles of postmortem AD brain [218,225]. Conversely, APOEε4 
markedly elevates AD risk [219,224], in which heterozygous and 
homozygous APOEε4 allele may increase AD risk by 3 and 12 times, 
respectively [223], accelerates disease course and worsens brain 
pathology [226-228]. A correlation between APOE4 genotype and 
increased expression of Serpina3n, a gene expressed by astrocytes 
and considered as a strong marker of reactive and aged astrocytes in 
the brain [229,230], has been reported with a possible contribution 
to the pathogenic role of APOE4 in AD [231]. Higher APOE4 level 
in Cerebral Spinal Fluid (CSF) of AD patients compared with that of 
control individuals has been connected to accelerated Aβ oligomer 
accumulation [232]. APOE4 may retard Aβ clearance and favour Aβ 
deposition via binding to Aβ after specific fragmentation [205,223]. 
APOE4 was reported to trap ATP-binding cassette transporters A1 
(ABACA1) (a regulator of APOE4 lapidation in protection from 
lipidpoor ApoE4 aggregation) in late rather than recycling endosomes 
and alter ABACA1 membrane trafficking in astrocytes, which might 
result in reduced Aβ degradation [233]. Insufficient Aβ clearance also 
affects accumulation in synaptic cleft, contributing to disruption of 
hippocampal long-term synaptic plasticity related to learning and 
memory abilities [234]. APOE4 is internalized in APOE receptors such 
as low-density lipoprotein receptor-related protein 1 (LRP1) which is 
also a member of Aβ receptors including very low-density lipoprotein 
receptor (VLDLR) and apolipoprotein E receptor 2 (APOER2) [209]. 
Additionally, APOE4-induced reduction of dendritic spine density 
in mice [234,235] is consistent with pathological changes (dendritic 

spine density reduction and synapse loss) observed in brain tissues 
from AD APOEε4-carriers [236]. APOE4 causes widespread AD 
phenotypes-associated cellular and molecular alterations in brain 
cells derived from human induced pluripotent stem cells (iPSCs), 
among which increased Aβ secretion as well as impaired Aβ uptake 
and cholesterol accumulation occurred in neurons and astrocytes, 
respectively [237]. Astrocytic lipid metabolism is influenced by 
APOE4 [237,238], in which increased fatty acid unsaturation and 
lipid droplet (LD) accumulation were found in APOE4-expressing 
human iPSC-derived astrocytes, which can be restored to basal 
state through supplementation of culture medium with choline (a 
soluble phospholipid precursor) [238]. Furthermore, APOE4 can 
also impair astrocyte-neuron coupling of fatty acid metabolism via 
decreased fatty acid (FA) sequestering in LDs, reduced LD transport 
efficiency and lowered FA oxidation, resulting in lipid accumulation 
in astrocytes and hippocampus, diminished abilities of astrocytes 
in neuronal lipid elimination and FA degradation, accelerated lipid 
dysregulation and increased AD risk [239].

ACSBG1 and ACSL6

Cellular accumulation and activation of fatty acids (FAs) 
either synthesized de novo or taken up from diets require the ATP-
dependent reaction catalyzed by acyl-CoA synthetases (ACSs), 
a family of enzymes initiating FA metabolism-related reactions 
through ligation to coenzyme A (CoA) [240]. ACS enzyme family 
contain various members differing in distribution and fatty acid 
substrate preference [241], among which only two show specific 
enrichment in the brain, ACSBG1 and ACSL6 [242,243], suggesting 
their potentially particular roles in modulation of brain fatty acid 
metabolism. ACSBG1, almost exclusively expressed in astrocytes, 
have preferences for a wide range of substrates containing long-
chain saturated and unsaturated fatty acids [244,245]. ACSBG1 
knockdown in vitro results in decreased ACS enzymatic activity 
and FA oxidation [245], indicating its participation in astrocytic FA 
oxidation, however, clear roles of ACSBG1 in brain function and/or 
dysfunction still remain poorly understood. ACSL6 showing high 
expression in the brain was reported to be downregulated in age-
related neurodegenerative diseases [246,247] and in direct correlation 
with neurite outgrowth [248-252]. With high substrate preference for 
docosahexaenoic acid (DHA) of which low levels are associated with 
AD pathophysiology [253], ACSL6 has been revealed with key roles 
in regulating DHA incorporation into neuronal membranes using 
Acsl6 deficient mice with significant reduction in DHA-containing 
phospholipids and impaired memory [254,255]. Critical roles of 
ACSL6 in brain DHA retention and neuroprotection are further 
supported by findings that ACSL6 depletion led to markedly reduced 
levels of brain membrane phospholipid DHA, spatial memory deficits, 
hyperlocomotion, increased cholesterol biosynthesis and age-related 
neuroinflammation [256]. What’s noteworthy is that astrocyte-specific 
depletion had minimal influence on membrane lipid composition 
[256] in consideration of ACSL6 enrichment in astrocytes [240,257-
261], possibly due to the expression of a DHA-nonpreferring variant 
[251,262-267] and enrichment of Y-gate domain rather than DHA-
preferring F-gate domain in astrocytes [251].
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ATAD3A

ATPase family AAA-domain containing protein 3A (ATAD3A), 
a nuclear-encoded mitochondrial membrane-anchored protein 
belonging to the AAA+-ATPase protein family and simultaneously 
interacting with inner and outer mitochondrial membranes, is 
implicated in a variety of biological processes including stability 
maintenance of mitochondrial DNA (mtDNA), regulation of 
mitochondrial dynamics and cholesterol metabolism [268-270]. 
ATAD3A deficiency led to neurodegenerative phenotypes in 
association with cholesterol elevation, downregulated expression of 
cholesterol metabolism-related genes [269], optic atrophy and axonal 
neuropathy [271]. Oligomerization and accumulation of ATAD3A 
at MAMs, lipid raft-like ER subdomain rich in sphingomyelin and 
cholesterol [272] and associated with diverse metabolic functions 
such as lipid metabolism, mitochondrial function and calcium 
homeostasis [273-277], have been discovered in both mouse models 
and postmortem human brain tissues of Alzheimer’s disease [278]. 
Aberrantly oligomerized ATAD3A leads to cholesterol accumulation 
via expression inhibition of cholesterol clearancemediating 
cytochrome P450 family 46 subfamily A member 1 (CYP46A1) located 
on MAMs of which deficiency correlates with cholesterol disturbance, 
amyloid aggregation and cognitive impairments [279], AD-like MAM 
hyperconnectivity (e.g. impaired MAM integrity) [277] as well as 
synapse loss [278]. MAM-resident cholesterol imbalance facilitates 
amyloidogenic APP cleavage [165], in turn, retention of APP 
proteolytic fragments at MAMs interrupts cholesterol trafficking and 
homeostasis [280]. Additionally, blocking ATAD3A oligomerization 
by heterozygous knockout or pharmacological inhibition treated 
with DA1 peptide has been reported in causal relationship with 
cholesterol turnover normalization, MAM integrity enhancement, 
APP processing suppression, synapse loss mitigation and ultimate 
reduction of AD-like neuropathology and cognitive impairments 
[278], further revealing a role of ATAD3A in AD pathology and 
suggesting a potential therapeutic strategy of retarding AD progression 
through manipulation of abnormal ATAD3A oligomerization.

FoxO3

Forkhead box O transcription factor 3 (FoxO3) belonging to 
the forkhead box (FOX) family sharing an evolutionarily conserved 
forkhead DNA-binding domain composed of 80 to 100 amino 
acids [281]and possessing single nucleotide polymorphisms (SNPs) 
associated with human longevity [282,283] functions as a mediator of 
biological processes promoting lifespan and preventing aging-related 
diseases [284,285], of which alterations are involved in carcinoma, 
cardiovascular and neurodegenerative diseases [283,286-289]. FoxO3 
plays a pivotal role in quiescence maintenance of neural stem cells 
(NSCs) in the brain, removal of which induces NSC differentiation 
and consequent NSC pool reduction [290-293]. Apart from capacities 
for neuronal survival promotion or neuronal apoptosis mediation 
[294,295], FoxO3 has also been shown with astrocyte proliferation 
controlling through inhibiting inflammatory cytokines (e.g. TNF-α 
and IL-1β) mediating reactive astrogliosis in neurodegenerative 
diseases [296-299]. Conditional knockout of FoxO3 in astrocytes was 
reported to impair consumption of excess fatty acids [300] which are 

cytotoxic and destructive to mitochondrial function [301]. FoxO3 
reduction in aged mice was found to be specific to the cortex rather 
than the hippocampus, where FoxO3 deficiency caused cortical 
astrogliosis and dysregulated lipid metabolism [300]. In addition, lipid 
dysregulation, mitochondrial dysfunction together with Aβ uptake 
impairment were also observed in cultured astrocytes deficient in 
FoxO3, which could be reversed by astrocytic FoxO3 overexpression 
[300], potentially supporting the concept that FoxO3 elevation 
in astrocytes may retard or restore cortical astrogliosis and AD-
associated impairments.

GSAP

Under typical conditions, Amyloid-β (Aβ) peptides as the products 
of body’s cholesterol disturbance are cleaved from amyloid precursor 
protein (APP) which may occur in two cellular pools, namely lipid 
raft-associated pool preferentially favouring APP cleavage by β- and 
γ-secretase as well as non-raft pools where cleavage is performed 
by α-secretase in a non-amyloidogenic pathway [302] and rapidly 
eliminated to maintain normal Aβ levels [303]. γ‐secretase activating 
protein (GSAP) was first reported for its regulatory roles in γ-secretase 
activity and specificity and its significant and selective enhancement 
of Aβ production through interactions with γsecretase and amyloid 
precursor protein carboxy‐terminal fragment (APP-CTF) [304]. 
Significantly upregulated GSAP level has been demonstrated in both 
AD mouse models and postmortem brain tissues from AD patients 
[305-307]. Single-nucleotide polymorphisms (SNPs) at the GSAP 
locus have been shown association with AD diagnosis [308,309], of 
which one SNP was found to correlate with GSAP expression and AD 
risk [310]. Genetic knockdown and pharmacological inhibition of 
GSAP suppress Aβ generation and deposition and tau phosphorylation 
in AD mouse models [304,305,311]. Apart from the promotion of 
APP-CTF partitioning into Aβ production-favoring lipid rafts, GSAP 
has also been shown to be enriched in mitochondria-associated 
membranes (MAMs), an intracellular domain where amyloidogenic 
APP processing responsible for dysregulated lipid metabolism is 
performed [312,313]. GSAP depletion lowers APP-CTF accumulation 
in lipid rafts, reduces ER-mitochondrial contacts elevated in AD [313-
316], and alters lipid profiles in a direction opposite to AD pathogenesis 
(e.g. GSAP depletion-raised levels of phosphatidylethanolamine (PE) 
and phosphatidylinositol (PI) showing consistent reduction in human 
AD brain) [310,317]. What’s more, interactions between GSAP and 
multiple components related to ER-associated degradation (ERAD) 
regulating mitochondrial function through MAM and participating in 
AD pathogenesis have also been revealed, further supporting crucial 
roles of GSAP in attenuating AD-associated pathogenic process.

Glioblastoma

Glioma as a malignant primary brain tumor originating from 
astrocytes or other glial cells accounts for approximately 80% of all 
malignant brain tumors [318], of which glioblastoma (GBM) is the 
most aggressive type of brain tumor known with a 5-year survival rate 
below 5% [319-321]. Metabolic reprogramming has been recognized 
as a fundamental hallmark for carcinogenesis and progression of 
multiple tumors including GBM [322-324], through which tumor 
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cells meet the high-energy demands of rapid proliferation [325]. 
Except for the representative metabolic feature named the Warburg 
effect, a phenomenon in which GBM cells rely on glycolysis for 
energy production under oxygen-sufficient and oxygen-insufficient 
conditions [323,325-327], GBM cells can also be fueled by fatty 
acid oxidation (FAO) as an alternative crucial energy resource 
to meet high-energy consumption in GBM aggressiveness [328-
332], of which inhibition negatively impacted GBM proliferation 
and progression [333]. Oxidation of fatty acids is achieved by 
two major pathways, namely enzymatic oxidation mediated by 
peroxidases (e.g cyclooxygenase (COX), cytochrome P450 (CYP450), 
lipoxygenase (LOX) and phospholipase A2 (PLA2)) [334] as well 
as nonenzymatic self-catalyzed peroxidation (Figure 2A) of which 
4-hydroxynonenal (4HNE) is an end-product showing elevated 
expression proportional to the grade of brain tumor malignancy [335-

337]. Moreover, lipid metabolism reprogramming in association with 
numerous pathophysiological processes such as tumor proliferation 
and development [338-343] has been further evidenced with the 
observation of large amounts of lipid droplets (LDs) in GBM [344-
346] and other tumors [347-354]. Neutral lipid core of a single LD 
includes cholesteryl esters and triglycerides (TGs) composed of 
glycerol molecules with triple hydroxyl groups esterified by fatty acids 
[355-358]. TGs have been demonstrated to serve as an important 
energy reservoir for supporting GBM cell survival, in which LDs were 
rapidly broken down by GBM cells via autophagy, a pivotal cellular 
process degrading damaged organelles and protein aggregates and 
recycling nutrients via hydrolysis of cytoplasmic components to 
ultimately maintain cellular homeostasis [359-362], to release stored 
fatty acids for producing energy upon energetic stress like glucose 
deprivation (Figure 2B), in turn, inhibition of FAO or autophagy led 

Figure 2: A. Scheme of non-enzymatic self-catalyzed lipid peroxidation. Abstraction of allylic hydrogen from PUFA induces lipid radical formation and initiates a chain reaction of lipid 
peroxidation, which is followed by conjugated diene-yielding molecular rearrangement. Conjugated dienes, in presence of molecular oxygen, are transformed to lipid peroxyl radical abstracting 
allylic hydrogen from another PUFA, forming lipid hydroperoxide and another lipid radical. Lipid hydroperoxide can be further catalyzed and transformed to lipid alkoxyl radical and lipid 
peroxyl radical. Lipid peroxidation is terminated when non-radical products are formed because of interaction with antioxidants. Reaction between two lipid peroxyl radicals or two lipid 
alkoxyl radicals will consequently form a peroxide-bridged lipid dimer, while lipid dimers can be formed by reaction between lipid hydroperoxides and lipid radicals. PUFA, polyunsaturated 
fatty acids. B. Schematic model of LDs hydrolysis maintaining GBM cell survival. GBM cells mainly utilize glucose to produce energy under glucose-rich conditions, while LDs can be rapidly 
broken down after autophagy activation upon glucose starvation, released FAs then enter mitochondria for energy production. FAs, fatty acids; LDs, lipid droplets; GBM, glioblastoma. C. 
Astrocytes are relied upon by neurons and GBM cells to provide de novo synthesized cholesterol. Neurons and GBM cells take up astrocyte-secreted cholesterol in APOE-containing lipoproteins. 
Following cholesterol uptake mediated by LDLR, oxysterol and cholesterol derivatives produced in neurons are physiological agonists for LXR of which activation leads to dimerization with 
RXR and subsequent elevation in ABCA1 expression. LXR activation also inhibits LDLR expression, resulting in decreased cholesterol uptake and regulating intracellular cholesterol level. On 
the contrary, mechanisms surveilling and regulating cholesterol are disrupted in GBM cells, in which oxysterol and cholesterol derivatives cannot activate LXR inducing intracellular cholesterol 
accumulation. ABCA1, ATP-binding cassette transporter A1; APOE, apolipoprotein E; GBM, glioblastoma; LDLR, low-density lipoprotein receptor; LXR, liver X receptor; RXR, retinoid X 
receptor.
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to LD retention and significant potentiation of GBM cell death [363], 
suggesting that LDs may play critical roles in regulating GBM growth 
and limitation of LD usage might be indispensable in GBM treatment. 
What’s more, cholesterol metabolism in GBM is different from that in 
healthy brain tissues where nearly all brain cholesterol is synthesized 
de novo [364-366]. Contrary to normal astrocytes mainly synthesizing 
cholesterol from glucose or glutamine [367,369] and converting 
excess cholesterol to oxysterol as an endogenous ligand of liver X 
receptors (LXRs) to consequently trigger efflux of surplus cholesterol 
via ATPbinding cassette transporter A1 (ABCA1) and suppression 
of cholesterol uptake by low-density lipoprotein receptors (LDLRs) 
[370-374], GBM cells are insufficient to de novo synthesize cholesterol 
and thus dependent on exogenously supplied cholesterol for survival 
through upregulated LDLR expression [364,375] (Figure 2C), in which 
LXR agonists could induce GBM cell death by lowering intracellular 
cholesterol content via ABCA1-dependent cholesterol efflux and 
LDLR inhibition [364]. Additionally, intracellular cholesterol level 

has been revealed to be involved in resistance against GBM cell 
death induced by temozolomide (TMZ), a blood-brain barrier (BBB) 
penetrant chemotherapy agent currently used in the standard therapy 
for patients with GBM [376,377]. Furthermore, sphingomyelins (SMs), 
an important group of phospholipids in cell membranes, together with 
their hydrolysis by sphingomyelinases (SMase) are crucial to effects of 
radio- and chemotherapy [378,381]. Ceramides which are generated 
by SMase-mediated SM hydrolysis caused by TMZ and radiation 
can induce cell apoptosis [382-384], which can be evaded through 
conversion of ceramides to sphingosine-1-phosphate (S1P) (Figure 3) 
[385-387] linked to tumor grade and implicated in GBM aggressive 
phenotypes [383,388].

S1PRs

GBM cells utilize exogenous source of S1P synthesized and 
exported by astrocytes and neuronal cells [389] and endogenous S1P 
production [390] for tumor progression. Involvement of S1P in tumor 

Figure 3: Sphingolipid metabolism in tumor progression. Sphingomyelin, after chemotherapy and radiation, is broken down into ceramide involved in blocking tumor progression. Ceramide 
can be converted by tumor cells to S1P (S1P can also be produced by astrocytes and other cells) exerting protumor effects including tumor proliferation, migration, invasion and angiogenesis. 
Involvement of S1P in tumor progression is specifically mediated by S1PRs (S1PR1-S1PR5) which can signal through phospholipase mechanisms. Each S1PR can couple to one or more GPCRs 
to signal through different phospholipases and induce phenotypes (e.g. angiogenesis, proliferation, migration and invasion). CDase, ceramidase; GPCRs, G protein-coupled receptors; SMase, 
sphingomyelinase; S1P, sphingosine-1-phosphate; S1PRs, S1P receptors.
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growth, migration, invasion, survival and angiogenesis [391-394] is 
specifically mediated by the family of G-protein coupled receptors 
named S1P receptors (S1PRs, S1PR1-S1PR5) [395-400]. S1PR1, 
S1PR2, S1PR3 and S1PR5 are expressed in human GBM cells [401-
403], and elevated levels of S1PR1, S1PR2, and S1PR3 have been 
detected in brain tissues from GBM patients compared with healthy 
tissues, while only S1PR1 and S1PR2 showed significant association 
with GBM survival rates [401,402]. S1PRs are essential for mediating 
diverse S1P functions, whereas orientations in which they influence 
cell phenotypes still remain unclear. S1PR1 inhibition was reported 
to promote GBM cell proliferation, which collides with studies 
suggesting increased GBM proliferation by S1PR1-3, of which S1PR1 
showed the strongest effects [402,404]. S1PR2 was shown to both 
reduce GBM migration through Rho/Rho kinase signaling pathway 
and participate in promoting GBM invasion [405,406]. In addition, 
S1PR5 has also been identified as an independent prognostic factor 
of GBM patients’ survival, aligning with reported role of S1PR5 in 
proliferation promotion [404,407]. Pharmacologically altered S1PR 
expression by fingolimod (FTY720), a sphingosine analogue leading 
to S1PR1 internalization, has been revealed to suppress astrocyte 
activation and change astrocytic secretion of C-X-C motif chemokine 
5 (CXCL5) known to promote GBM proliferation and migration [408-
410]. Furthermore, functions of individual S1P receptor subtypes are 
dependent upon activation of diverse downstream effector proteins, 
especially coupling to different G-proteins [399], such as binding of 
S1PR1, S1PR2 and S1PR5 with Gi, activation of Gq by S1PR2 and 
S1PR3 as well as signaling of S1PR2, S1PR3, and S1PR5 via G12/13 
(Figure 3) [411], which alters signaling of phospholipases (particularly 

phospholipase C (PLC) cleaving proximal phosphodiester bonds of 
glycerophospholipids in production of phosphorylated headgroups 
and diacylglycerols [399,400]) and further activates downstream 
signaling molecules (e.g. extracellular signal-regulated kinase (ERK), 
phosphoinositide 3-kinase (PI3K) and mitogen-activated protein 
kinase (MEK)) (Table 2). What’s noteworthy is that a S1PR-targeted 
liposomal drug delivery system, named S1P/JS-K/Lipo, capable 
of blood-brain tumor barrier (BBTB) penetration and enhanced 
tumor-targeted delivery has recently been described, efficiently 
delivering a nitric oxide (NO) prodrug (JS-K, O2-(2,4-dinitrophenyl) 
1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1,2-diolate) to 
GBM tissues via specific interactions with S1PRs highly expressed 
on GBM cells [412], representing a promising targeted approach for 
GBM therapy.

FABP7

Fatty acid binding protein 7 (FABP7), a member of the multi-
gene FABP family comprised of structurally related proteins with 
expression patterns specific to cell, tissue and development, binds 
to very long chain polyunsaturated fatty acids (VLCPUFAs) such as 
docosahexaenoic acid (DHA) with high affinity [422,423]. FABP7 
abundant in astrocytes [424-426] is a lipid chaperone mediating 
cellular uptake, intracellular trafficking and subsequent oxidation of 
fatty acids (FAs), whose expression was reported to be elevated in 
GBM and GBM stem-like cells forming neurospheres (NS) and might 
accounting for GBM aggressiveness [427,428] and recurrence as well 
as associated with proliferation, migration and invasion of GBM 
cells, GBM histology and reduced survival time [429-434]. Under 

Models Involved S1PRs Signaling Pathways Findings Ref 

LN18 GBM cells;
U87MG GBM cells. 

S1PR1 ↑
S1PR2 ↑
S1PR3 ↑ 

PI3K/AKT1 pathway Demonstrated association between S1P1 and S1P2 with 
GBM patient's [413] 

survival. S1PR1/2 inhibition reduces GBM migration. 

U373MG GBM cells 
S1PR1 ↑
S1PR2 ↑
S1PR3 ↑ 

MAPK/ERK and PI3Kβ pathway S1P promotes glioma cell proliferation. [414] 

U373MG GBM cells; GBM6 cells; GBM12 cells. S1PR2 MEK1/2 and Rho/ROCK S1P induces mRNA and protein expression of PAI-1 and 
uPAR, which are important for GBM invasiveness. [415] 

U373MG GBM cells; U118MG GBM cells. 
S1PR1↑ 
S1PR2
S1PR3 

MAPK-ERK
Rho/ROCK 

S1PR, S1PR2 and S1PR3 all positively contribute to 
S1P-stimulated glioma cell proliferation, of which S1PR1 
makes the major contribution. 

[416] 

C6 glioma cells S1PR2 MAPK/ERK, PKC, PLC, PLD and 
Ca2+ signaling

S1PRs are linked to at least two signaling pathways 
(i.e. PTX-sensitive Gi/Go-protein pathway and toxin- 
insensitive Gq/G11-PLC pathway).

[417] 

C6 glioma cells; 1321-N1 astrocytoma cells. S1PR2 PI3K/Cdc42/p38MAPK and PI3K/
Rac1/JNK 

S1PR2 mediates S1P-induced negative regulation of 
glioma cell migration. [418] 

U373MG GBM cells; U87MG GBM cells; M059K 
cells; U-1242 cells; A172 cells. 

S1PR1 ↑
S1PR2 ↑
S1PR3 ↑ 

MAPK/ERK and PI3K S1P potently enhances glioma cell motility by signaling 
through coupling of S1PRs to Gi proteins. [419] 

T98G glioma cells; G112 glioma cells. S1P1, S1P2, S1P3 and S1P5 PTEN/AKT/Egr S1PR1 is a significant prognostic factor for glioma; [420] 

Downregulated S1PR1 expression increases glioma cell 
proliferation and enhances glioma malignancy. 

Human GBM specimens; U87 glioma cells; U251 
glioma cells; T98G glioma cells; G112 glioma cells. S1PR1↓  

Downregulated S1PR1 expression in GBM patients with a 
poor survival. S1PR1 signaling negatively controls glioma 
cell proliferation. 

[421] 

Table 2: Summary of S1PR-mediated effects in GBM.

AKT, v-akt murine thymoma viral oncogene homolog; Cdc42, cell division control protein 42 homolog; ERK, extracellular signal-regulated kinase; JNK, c-Jun Nterminal kinase; MAPK, 
mitogen-activated protein kinase; MEK, mitogen-activated protein kinase; PI3K, phosphoinositide 3-kinase; PLC, phospholipase C; PLD, phospholipase D; PTEN, phosphatase and tensin 
homolog; PTX, pertussis toxin; Rac1, Ras-related C3 botulinum toxin substrate 1; ROCK, Rho-associated protein kinase.
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metabolic stresses (e.g. hypoxia), fatty acids are stored as lipid droplets 
(LDs) and subsequently oxidized in a FABP-dependent manner for 
energy production in GBM cells [435]. Slowcycling cells (SCCs), a 
subpopulation of GBM cells preferentially utilizing mitochondrial 
oxidative phosphorylation (OXPHOS), showing elevated lipid contents 
specifically metabolized under glucose deprivation and displaying 
enhanced capabilities of migration, invasion and chemoresistance, 
have been revealed with the characterization of higher FABP 
expression and larger LD amounts in cultured conditions of normal 
oxygen levels or nutrients [436]. Additionally, resistance of SCCs 
against deprived glucose or inhibited glycolysis could be restrained by 
FA uptake blocking via genetic deletion or pharmacological inhibition 
of FABP7 [436].

Moreover, promotion effects of FABP7 on GBM cell migration 
can be mitigated with DHA supplementation through specific and 
dramatic inhibition of DHA supplementation in culture medium 
on plasma membrane lipid order of FABP7expressing GBM cells 
which positively correlates with GBM cell migration as well as DHA 
supplementation-mediated disruption of nanodomains formed by 
FABP7 on GBM cell membranes [437], further suggesting a critical 
role of FABP7 in lipid metabolism in GBM cells.

SCD

Stearoyl-CoA desaturase (SCD) is an endoplasmic reticulum 
(ER)-localized delta-9 fatty acid desaturase forming carbon-carbon 
double bonds at the 9th to 10th position from the COOH-terminus 
of saturated fatty acids (SFAs), stearic acid and palmitic acid and thus 
generating monounsaturated fatty acids (MUFAs), oleic acid and 
palmitoleic acid, respectively [438,439], whose expression correlates 
with the ratio of MUFA to SFA in which a disequilibrium contributes 
to alterations in cell growth and differentiation [438-441]. SCD has 
4 isoforms in mice (SCD1, SCD2, SCD3 and SCD4), while only two 
paralogs are expressed in human, namely SCD sharing approximately 
85% amino acid identity with mouse SCDs and SCD5 unique to 
primates [440,442]. SCD has been described as a hypermethylated 
gene member contributing to the CpG island methylator phenotype 
which defines a distinct glioma subgroup [443]. SCD expression in 
GBM, in contrast to SCD upregulation often observed in multiple 
human tumors [444-447], was reported to be lower than normal 
brain tissues because of hypermethylation and monoallelic deletion 
together with phosphatase and tensin homolog (PTEN) frequently 
deleted in GBM [448] in a subset of GBM patients [449]. In addition, 
GBM cells without epigenetic and genetic changes mentioned above 
were revealed to express elevated SCD levels on which tumor cells rely 
for their survival [449]. SCD inhibition by CAY10566, an inhibitor 
with a modest BBB penetration ability, has been demonstrated to 
not only significantly suppress intracranial GBM growth, but also 
obviously affect tumor vasculature including nearly complete blocking 
of intratumoral bleeding and possible normalization of blood vessels, 
potentially allowing enhanced delivery of combinedly used antitumor 
drugs such as temozolomide (TMZ) [449,450].

Conclusions

The brain is highly enriched in lipids where they are crucial 

for multiple physiological processes ranging from maintenance of 
structural integrity and metabolic homeostasis to brain function 
and development. Metabolism of lipids is a complicated process in 
which a wide range of lipid-related effector proteins are involved 
and whose alteration is strongly associated with brain dysfunctions 
and diseases such as Alzheimer’s disease (AD) and glioblastoma 
(GBM). In this review, we throw light upon basic classes of lipids 
including fatty acids, phospholipids, sphingolipids, sterol lipids and 
triglycerides, of which dysregulated metabolism can be regarded as 
disease biomarkers. We also briefly discuss the role of lipids within 
the brain and altered lipid profile correlated with astrocytic function 
and astrocyte-neuron crosstalk in AD and GBM. Moreover, we have 
discussed lipid-related metabolites and proteins critical for disease-
associated lipid dyshomeostasis and how these proteins together 
with lipids in correlation with astrocytic functions modulate disease 
pathogenesis and development, enlightening their therapeutic 
potential in preventing onset and progression of AD and GBM. 
However, there are still several lipids whose association with AD and 
GBM and availability as clinically valuable biomarkers for disease 
detection at early stages need further evaluation, which can be 
performed by newly-developed and improved techniques of gradually 
matured lipidomic platforms. What’s more, there remains much to be 
discovered about benefits and risks of manipulation of compounds 
affecting effector proteins involved in lipid metabolism, and further 
characterization of pathways in which important lipid-related proteins 
participate along with clinical studies will aid the understanding of 
pathogenesis mechanisms behind AD and GBM and identification of 
novel therapeutic targets to help ameliorate disease courses, facilitate 
disease treatments and consequently benefit patients.
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