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Introduction

The purpose of this paper is to review standard models of diffusion 
and to clarify the physical bases leading to the different differential 
equations. To understand the basic starting point and to establish the 
required notation we start with addressing attention to a mixture of n 
fluid constituents.

In essence, let ρα, vα be the mass density and the velocity of the 
αth constituent,

α = 1, ..., n. We let

be the mass density of the mixture and the mass fraction (or 
concentration) of the αth constituent; the sum on α is understood 
from 1 to n. As we prove in a moment ωα is subject to the differential 
equation

where hα is the mass flux,  is the gradient operator and then 
 is the divergence, and the superposed dot denotes the (total) time 

derivative.

Within the theory of mixtures hα is clearly defined and shown to 
satisfy a differential equation [1,2]. As we emphasize in this paper, 
hα is regarded as an unknown vector to be determined through 
mathematical assumptions associated with physical properties of the 
mixture. The original Fick’s model is based on the assumption

where Dα is the diffusivity. Next other models and their 
generalizations have been developed in terms of the chemical 
potential.

In this paper we first review known diffusion models in terms of 
the mass fraction ωα and the chemical potential µα. Next we investigate 
the thermodynamic consistency of the pertinent schemes and find 

Review Article 

Diffusion Models of Continuum Physics
Angelo Morro*

DIBRIS, Università di Genova, Via All’Opera Pia 13, 16145 Genova, Italy

*Corresponding author: Angelo Morro, DIBRIS, Università di Genova, Via All’Opera Pia 13, 16145 Genova, Italy

Received: July 25, 2022; Accepted: August 01, 2022; Published: August 08, 2022

that the recourse to the chemical potential is justified in two different 
ways. Next we examine the alternative recourse to the balance 
equations through a linearization procedure. Further, we point out 
that the ideas about the correspondence probability-concentration is 
applied to modelling diffusion in the quantum context.

Balance Equations for Fluid Mixtures

Consider a mixture of n fluid constituents (see, e.g., [1]). The 
suffices α, β = 1, 2, ..., n label the quantities related to the αth, βth 
constituent. Hence ρα is the mass density and vα the velocity of the αth 
constituent. The continuity equation of the αth constituent comprises 
the mass supply τα, per unit volume and unit time, so that

                                                (1)

The conservation of mass of the whole mixture implies

                                                                                 (2)

Hereafter  is a shorthand for  .The mass supply τα is 
nonzero in chemical reactions and phase transformations or generally 
whenever a constituent may gain or lose mass in favor of the other 
constituents.

The mass density ρ and the (barycentric) velocity v of the mixture 
are defined by

The ratio

is the mass fraction (or concentration) of the αth constituent and

uα = vα − v

is the diffusion velocity. The definition of v implies that
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The sum of (1) with the constraint (2) results in

∂tρ + ∇ · (ρv) = 0,               (3)

which is the continuity equation for the whole mixture.

We now investigate the evolution equation for ωα. Replace ρα with 
ρωα and vα with

v + uα in (1). In view of (3) we find

ρ(∂tωα + v · ∇ωα) + ∇ · (ραuα) = τα.

Observe that ∂tωα + v. ωα is the derivative with respect to 
the barycentric observer. As with any function it is denoted by a 
superposed dot. The vector

hα := ραuα

is the αth diffusion flux representing the flux of the αth constituent 
relative to the barycentric observer. Hence we can write

                         (4)

The mass fraction ωα, in the barycentric reference, evolves 
according to (4). This equation is operative once τα and hα are given 
in terms of , possibly parameterized by temperature and pressure.

The equation of motion of the αth constituent can be written in 
the form

∂t(ραvα) + ∇ · (ραvα ⊗ vα) − ∇ · Tα − ραbα = mα,

where Tα is the Cauchy stress tensor, bα is the body force, and mα 
is the growth of the linear momentum, that is the force on the αth 
constituent due to other constituents of the mixture. The growths {mα} 
are subject to the constraint

                                   (5)

Modelling of Diffusion Fluxes and Diffusion Equations

The physical modelling of diffusion is most often restricted to 
non-reacting mixtures, τα = 0, and is based on the view that diffusion 
is governed by (4) with appropriate models for hα.

The simplest and best known model of diffusion traces back to 
Fick [3] and is based on an assumption on hα that is motivated by 
the analogy with the Fourier model of heat conduction. First the total 
derivative  is replaced with the partial derivative ∂tωα; this means 
that diffusion is examined in the barycentric frame. Moreover, Fick’s 
law assumes the diffusion flux hα is antiparallel to  ωα, i.e. hα = κα ωα, 
where κα > 0 may depend on the constituent. Hence divide eq. (4) by 
ρ to obtain

where ζα = τα/ρ. If κα is constant then the evolution equation for 
ωα takes the form

∂tωα = Dα∆ωα + ζα,                 (6)

the quantity Dα = κα/ρ is called diffusivity.

Diffusion in solids is often modelled by letting ([4], ch. 17)

hα = −Dα∇Nα,

where Nα is the concentration in the form  

 

 being the number of atoms per unit volume.

Other diffusion equations are based on the following two main 
assumptions. Let ψα

be the αth Helmholtz free energy and define

 = ∂ωαψα − ∇ · ∂∇ωα ψα.

The assumption is

hα = −κα∇µα.

For definiteness we consider ψα in the form [5]

( , ∇ ) = f ( ) + 1
2 |∇ |2.                                     (7)

If λα is constant then it follows

and eq. (4) takes the form

                  (8)

Equation (8) is usually referred to as the Cahn-Hilliard equation 
[6,7]. It is a fourth-order partial differential equation. If the dependence 
on ∇ωα is ignored then the Cahn-Hilliard equation reduces to the 
second-order parabolic equation (6).

Alternatively it is assumed that the evolution of ωα is in fact a 
relaxation toward equilibrium governed by [8]

Hence, letting ψα be given again by the Landau-Ginzburg function 
(7) we obtain

                                                                                                       (9)

Equation (9) is a second-order partial differential equation when 
ψα depends on ωα; it is referred to as the Ginzburg-Landau equation 
or the Allen-Cahn equation. While eq.

(6) is based on Fick’s law hα = −κα∇ωα, eqs (8) and (9) are based 
on the assumptions

                  (10)

The function is often regarded as the chemical potential. As 
we see in a moment  differs from the standard (correct) expression 
of the chemical potential. Moreover even simple thermodynamic 
considerations would justify the use of the chemical potential.

Thermodynamic Test of (10)

The balances of energy and entropy are stated by considering the 
mixture as a whole body. The balance of energy is taken in the form

ρε˙ = T · D − ∇ · q + ρr,                    (11)

where ε is the internal energy density, per unit mass, D is the 
stretching tensor, q is the heat flux vector, and r is the external heat 
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supply. Let θ > 0 be the absolute temperature. The second law of 
thermodynamics is stated as follows: the entropy density η and the 
entropy flux j satisfy the inequality

  

For every admissible process that is every set of constitutive 
functions compatible with the balance equtaions.

For formal conveneince let

 

k being the extra-entropy flux to be determined. Substituting ρr-
∇.q from eq. (11)

we have

Let ψ = ε-θη be the Helmholtz free energy of the mixture. The 
second law inequality can be written as

                  (12)

To determine thermodynamic consequences of the second law we 
now consider      

as the set of independent variables. Moreover we specialize T in 
the form

T = −p(θ, ρ, ∇ρ)1 + T (Ξ),

with T = O(D) as D→0. Compute ψ˙ and substitute in the Clausius-
Duhem inequality (12). The arbitrariness and linearity of ω¨α, ρ¨, D¨ , 
θ¨ reduces the possible dependencies of ψ

to

ψ = ψ(θ, ρ, {ωα}, ∇θ, ∇ρ, {∇ωα})

and the Clausius-Duhem inequality to

                                    (13)

We use the identity

∇˙ρ = ∇ρ˙ − LT ∇ρ

and the analogue for ∇θ and ∇ωα. Now, divide (13) by θ and 
consider the identities

and the like for θ,

 

Moreover we have

 

Where

         

Likewise let

Hence upon some rearrangements we can write inequality (13) 
in the form

Since L = D+W, with W ∈ skw the spin tensor, then the arbitrariness 
of W implies that

Hence we have   

Now,  D0 being the deviator of D. This in 
turn implies that T∇ embodies an isotropic part to contribute to the 
pressure. For simplicity we let p be free of tr T∇. Consequently, since 
ρ˙ = −ρ∇ · v it follows that the inequality takes the form

 

the dots denoting the other terms of the inequality. Hence we let

p = ρ2δρψ.

Consequently we are left with the inequality

Thermodynamic Restriction on  

Sufficient conditions for inequality (14) are

η = −∂θψ,

 

or, furthermore,

The first inequality in (15) holds if

It is suggestive that this thermodynamic condition has the form of 
(10)2. Yet we have to check whether  Now, from the theory 
of  mixtures we have
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to within kinetic terms. If we let each ψα depend on the 
corresponding mass density

ψα = ψα(θ, ρα, ∇ωα)

we have

δωαψ = ψα + ωα∂ραψαρ − ωα∇ · ∂∇ωαψα

If, as is the case of fluids,

 

then we find

Hence we conclude that, to within  the standard 
chemical potential is

 

Thermodynamic Restriction on hα

Back to inequality (14)  we let again η = −δθψ. Next we observe that  
 is given by (1). Substitution of   from  (1) results in

 

In view of the identity

inequality (16) can be given the form

Hence we let

 

and 

This inequality holds if each term has the required sign; in 
particular

                               (17)

Inequality (17)1 holds if

                                  (18)

Hence, owing to the neglect of kinetic terms in ψ, by the second 
law inequality it follows that the diffusion flux hα is determined by the 
gradient of µα/θ, and not merely of µα. This is a direct thermodynamic 
requirement without any need of a-priori rescaling [9].

Inequality (17)2 governs the evolution of a possible reaction. For a 
binary mixture the inequality reduces to

τ1(µ1 − µ2) ≤ 0;

the reaction proceeds toward the constituent with higher values of 
the chemical potential.

Diffusion of Electrically Charged Constituents

Equation (4) is a basic reference in the modelling of diffusion. 

Indeed, for non-reacting mixtures the basic equation is written in the 
form

∂tωα = −∇ · hα, (19)

the occurrence of ρ, though non-constant, being ignored; in 
the literature the notation is frequently ci and Ji for ωα and hα. For 
definiteness, look at the motion of a charged constituent in a fluid 
medium.

The diffusion flux is viewed as the sum of three terms [10]: a 
diffusion term Dα  ωα as in Fick’s law, an advective term ωαv viewed 
as the transport  of the  constituent via the motion of the fluid, the 
diffusivity times the electric force (electromigration). The advective 
term may be ignored by selecting a frame at rest with the fluid.

An extensive approach in the literature is based on eq. (18) and on

hα = −Dα∇ωα

in the simplest model. Borrowing from the properties of the ideal 
gas we take the chemical potential µα in the form

to within inessential additive terms independent of ωα.  Hence we 
observe that, at constant temperature,

Now the chemical potential is an energy per unit mass. Assume 
the αth constituent consists of ions with electric charge zαe, where e is 
(the absolute value of) the electron charge. The force per unit mass is

φ being the potential and mα the ion mass. Moreover

 

where F is the Faraday constant, i.e. the charge of a mole, and Ma 
is the molar mass. Hence we write the whole chemical potential, or 
electrostatic-chemical potential, in the form

In this approach the diffusion equation reads

                                        (20)

This is a form of the Nernst-Planck equation [11].

Kirkendall Effect

The Kirkendall effect involves a property of diffusion associated 
with different diffusivities of the constituents. The property was found 
experimentally by Smiglskas and Kirkendall. In essence, molibdenum 
markers are located at the boundary between the inner CuZn block 
and the outer copper covering. Upon heating, the markers are 
observed to move inward. To explain the experiment, we observe that 



Nanotechnol Adv Mater Sci, Volume 5(2): 5–6, 2022 

Angelo Morro (2022) Diffusion Models of Continuum Physics

within the block Cu and Zn atoms have the same density N; since 
the atomic weights are almost the same (Cu 63.5, Zn 65.4) the equal 
density N means equal concentration ω. The Zn atoms have a higher 
diffusivity coefficient and hence the outward flux of Zn is not exactly 
compensated by the inward flux of Cu atoms. Thus the mass of matter 
in the block decreases and this results in the movement of the copper-
brass interface(markers) toward the inner block.

We now ask for the velocity of the markers. We have

ρZnuZn = hZn = −DZn∇ω, ρCuuCu = hCu = −DCu∇ω;

really we should account also for a inward flux of vacancies (from 
the material with the higher diffusion coefficient). In one dimension 
we obtain the velocity v of the markers as follows,

Dynamic Diffusion Equation

Models of diffusion are usually based on the balance equation 
(4) for the mass fraction ωα and a constitutive equation for the mass 
flux hα. Hence the resulting differential equation for ωα is strongly 
affected by the constitutive assumption. It seems of interest to look 
at the evolution problem via the balance equations for the unknown 
densities ρα.

Restrict attention to mixtures of inviscid fluids and hence Tα = pα1. 
Consider the balance of mass and linear momentum in the local form,

∂tρα = −∇ · (ραvα) + τα,                                                             (21)

 ∂t(ραvα) + ∇ · (ραvα ⊗ vα) = −∇pα + ραbα + mα.                                   (22)

Partial time differentiation of the first equation, divergence of the 
second one, and substitution of ∇ · ∂t(ραvα) yield

                       ∂2ρα = ∇ · [∇ · (ραvα ⊗ vα)] − ∇ · (∇ · Tα) − ∇ · (ραbα) 
− ∇ · mα + ∂tτα.

If the constituent is regarded as an inviscid fluid, Tα = −pα1, it 
follows

∂2ρα = ∇ · [∇ · (ραvα ⊗ vα)] + ∆pα − ∇ · (ραbα) − ∇ · mα + ∂tτα.

We let pα = pα(ρα, θα) and hence

∇pα = ∂ραpα∇ρα + ∂θα pα∇θα.

In the linear approximation we neglect ∇ · [∇ · (ραvα ⊗ vα)] and let

∆pα = ∂ραpα∆ρα + ∂θαpα∆θα

to obtain

If, further, the temperature is assumed to be uniform, ∇θα = 0, 
then

              (23)

Equation (23) is the αth equation of a system where ∇. mα and ∂tτα 
account for possible coupling terms. Since ρα = ρωα, if ρ is assumed to 
be constant then we have

If the αth constituent is electrically charged then

 

where e is (the absolute value of) the electronic charge, zαe is the 
ionic charge, and mα

is the ionic mass. In terms of molar quantities we have

 

where Mα is the molar mass and F is the Faraday constant, i.e. the 
charge of a mole. Hence, if E is uniform then we can write the equation 
for ωα in the form

 

Quantum Diffusion Models

If a quantum particle moves in space under a force with potential 
U then the wavefunction

ψ  evolves in time according to the Schr¨odinger equation

             (24)

where m is the mass of the particle. Since ψ is complex valued then 
we can write

where ρ and S are functions of the position x and time t. The 
relation

ψψ∗ = ρ

ascribes to ρ(x, t) the probability density, per unit volume, of 
finding the particle at the point x at time t. Computing ∂tψ, ∆ψ and 
substituting in (24) we obtain

Equating the imaginary parts and observing that ∇ρ · ∇S + ρ∆S = 
∇ · (ρ∇S) we have

                                                                         (25)

 

This equation has an immediate physical interpretation. If we let ρ 
be the analogue of the classical mass density then if we let

we can write (25) in the form

∂tρ = −∇ · (ρv),

which is formally the continuity equation in continuum 
mechanics. This result indicates a close analogy between quantum and 
classical schemes which are extended to diffusion.
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We now look for the possible meaning of the relation coming from 
equating the real parts. Upon some rearrangements we find

 

The quantity Q has the role of a potential, like U , and is often referred 
to as Bohm quantum potential [12]. Furthermore apply the gradient to 
(26) and assume S has continuous second-order derivatives to have

Since

then we can replace ∇S with mv to obtain

 m[∂tv + (v · ∇)v] = −∇Q − ∇U. (27)

Equation (27) is formally the equation of motion with the 
Lagrangian (total) time derivative in the left-hand side, as it has to be. 
Consequently Q may also be viewed as a pressure term.

Diffusion is modelled by having in mind the parabolic character 
of the classical diffusion equation. Let P be the probability density of 
Brownian particles with mass m. Form the equation of motion we 
ascribe to P the equation

m∂2P + b∂tP = ∆p,

p being the opposite of the pressure. Then we let p = kBθP , where 
kB is the Boltzmann constant. In the high friction limit [13] it follows 
the parabolic equation

∂tP = D∆P, D = κBθ/b.

When quantum diffusion is described within a continuum 
mechanics approach the governing equation is taken in a Fick-like 
form. As an example [14], in the quantum diffusion of H atoms in solid 
molecular hydrogen films, the H atom concentration, n, is described 
by a differential equation in the form

∂tn = −D∂2n + f(n).

Conclusions

Well-known diffusion equations are considered for the 
concentration (mass fraction) ωα = ρα/ρ. In addition to the classical 
parabolic equation (6) we have reviewed the Cahn-Hilliard equation 
(8) and the Ginzburg-Landau equation (9). The rather general 
approach to the modelling of diffusion processes is based on the view 
that the diffusion flux, here hα, has to be determined by a constitutive 
equation and that a safe rule is to let hα be proportional to the gradient 
of the chemical potential µα. As a remarkable example we have shown 
how the approach via chemical potentials, for charged constituents, 
leads to the Nernst-Planck equation. Diffusion in the quantum 
domain is still based on the classical Fick’s law.

While hα in terms of ωα is inherited from the historical Fick’s 
model, the recourse to the chemical potential is found to be 
thermodynamically consistent in two cases, just those leading to 

the Cahn-Hilliard and Ginzburg-Landau equations. In the present 
thermodynamic analysis the αth chemical potential is derived from 
the Helmholtz free energy

instead of from ψα(ωα).

The developments of this paper show that the constitutive 
equations for the mass flux hα are in fact approximations; the involved 
equation for hα [1] justifies the recourse to approximations. However, 
the investigation of approximated diffusion equations indicates 
that a privileged role should be ascribed to the dynamic differential 
equations, based on the (exact) balance equations (21), (22). The 
difference in having recourse to the dynamic equations is exemplified 
with the analogue of Nernst-Planck equation.
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