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Introduction

An electromagnetic (EM) mechanism for surface enhanced 
Raman spectroscopy (SERS) involves the localization and 
amplification of incident light fields by a surface plasmon resonance. 
Motivated by the need to quantify the EM enhancement within such 
structures, computational studies using the finite element method 
(FEM), the finite-difference time domain (FDTD) method, discrete 
dipole approximation, and the generalized multipole Mie (GMM) 
analysis appeared as ideal complement to experimental studies [1,2]. 
The ability of SERS to obtain single-molecule sensitivity relies on the 
formation of regions with ultra-highly enhancement called hot spots. 
These highly enhancement sites occur at the junction between two and 
more plasmonic structures separated by a very small gap. In the limit 
of very small particles, the EM interaction between different parts of 
the metal is instantaneous. Then Maxwell equations are leading to 
the condition that the electric and magnetic fields are longitudinal(

0E H∇× = ∇× =
    ). The magnetic response of the particles is negligible 

at optical frequencies for very small particles so that the electric field is 
the gradient of the scalar electric potential, E ψ= −∇

 
 [3]. In the present 

work analytical results are developed for maximal SERS enhancement 
factor ( EF ) under such conditions for two nearby metallic spheres. 
It is of much importance to find the conditions under which the EF  
is maximal so that spectroscopic effects on one molecule level can be 
observed. Although we treat a very special system one can learn from 
this case about the general conditions for getting maximal EF .

We consider two metallic spheres of equal radius R  described in 
Figure 1. We choose the vertical z-axis along the line passing through 
the centers of the spheres. The perpendicular ,x y  plane contains the 
midpoint between the two spheres. We assume that the distance from 
the center of one sphere with radius, R (the upper one) to the center of 
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the coordinate system along the z  coordinate is D+  and that for the 
other sphere with the same radius R (the lower one) is D− .

Abstract

The interaction between two metallic spheres with radius R with external electromagnetic (EM) field polarized in the symmetric   direction is described 
Solutions of Laplace equation with bi-spherical coordinates are developed Hot spots are obtained under the condition that the shortest distance between 
the two spheres surfaces is very small relative to their radius. Boundary conditions are applied which assume very large real negative value for the 
dielectric constant of the metallic spheres. Under these conditions the EM field is amplified by many orders of magnitudes relative to the incident EM 
field. Analytical results for maximal Raman enhancement factor (EF) are obtained as function of various parameters. The present study can be applied 
to surface-enhanced Raman spectroscopy (SERS) and two-photon induced illumination (TPI-PL) in which the amplification is proportional to the fourth 
power of the incident EM field.

Figure 1: Two spheres with metallic dielectric constant ε(ω) with radius R and the 
surrounding medium with dielectric constant ε1, under homogenous external EM field 
propagating in the x direction and polarized in the Z  direction where EZ = E0. Various 
parameters are described in the present x, Z  coordinates system.
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We define

( )
1/21/2 22 2 2;D R a D R R Rδ δ  = + = − = + −   

           (1)

The shortest distance between the two spheres surfaces is given 
by: 2δ . For simplicity we treat mainly the case where the incoming 
EM field is homogenous and the electric field 2δ  is along the z  axis. 
Assuming certain values for the dielectric constants [4,5] (for the 
two spheres ( )ε ω  which are function of the frequency ω  and for 
the surrounding medium 1ε ) we present the solutions of the Laplace 
equation for the limiting case for which 1δ < . The two focuses 1F  
and 2F  are located at a distance a  from the center of the coordinate 
system along the symmetric z  axis, in upper and lower directions, 
respectively.

Laplace equations solutions for the upper and lower spheres are 
given by ψ+  and ψ− , respectively, and Laplace equation solution 
for the surrounding medium is given by 1ψ . The present system has 
a cylindrical symmetry under rotation around the z  axis. Thus, the 
two focuses are not changed by this rotation. It was shown [6-9] that 
Raman signals are strongly amplified when the molecules are inserted 
in the interstitial gaps between nanoparticles due to the very strong 
EM fields induced in these gaps (“hot spots”). Special studies were 
made on Raman signals enhancement in dimers (two nanoparticles) 
[10,11]. It was found that the Raman signals of spherical dimers are 
strongly enhanced when the incident polarization is parallel to the 
inter particle axis of the dimer (parallel polarization) [12]. In this 
case the opposite charges of polarization are facing each other at 
the small gap and by their interaction generate a huge EM field. On 
the other hand, when the incident EM field is polarized in direction 
perpendicular to the inter particle axis (perpendicular polarization) 
the induced charges are in directions different from that of the gap. 
In this case, individual local surface plasmons (LSP) in the dimer do 
not interact strongly with each other. As a result, EM field interaction 
is approximately compared in this case with that of isolated particles. 
It was found that the signal in SERS is proportional to the fourth 
power of the amplified EM field for parallel polarization. Similar 
results are obtained by two-photons-induced luminescence (TPI-
PL) [13]. Raman scattering and TPI-PL phenomena are increased by 
many orders of magnitude relative to that of the ordinary ones, for 
molecules inserted in these hot spots.

In the present work we study the solutions of Laplace equation 
solutions for dimers with bi-spherical coordinates [14,15] which are 
developed under the condition 2 1δ < . Hot spots are produced 
in the system of two metallic spheres interacting with external 
homogeneous EM field. While important results (mainly for the 
potential) for the present system were developed by solving Laplace 
equation with the use of bi-spherical coordinates the analysis for the 
hot spots remained problematic due to convergence problems. By 
using boundary conditions various authors [16] obtained after some 
tedious algebra set of recursion relations (or equivalently infinite set 
of linear equations) for the Laplace equation superposition solutions. 
Such system was truncated by taking finite set of linear equations 
and was solved on computers. Special care was taken to make sure 
its convergence i e , that the number of recursion relations is not 
too small (especially for nearby spheres where very high number of 

recursion relations is needed). We give here an alternative for deriving 
the EM fields at the hot spots by using bi-spherical coordinates with 
certain approximations. We develop in the present work a relatively 
simpler model for analyzing the properties of the EM fields by using 
approximations which are suitable for treating the hot spots with 
the use of bi-spherical coordinates. Analytical results for maximal 
enhancement factor ( EF ) are developed. The bi-spherical 
coordinates are a special three-dimensional orthogonal coordinates 
system defined by coordinates , ,η α φ .

( )
( )

( )
2 2 2

sin cos / cosh cos ,

sin sin / cosh cos ,

sinh / cosh cos

cosh cos
cosh cos

x a

y a

z a

r x y z a

α φ η α

α φ η α

η η α

η α
η α

= −

= −

= −

+
= + + =

−           

(2)

The two poles with η = ±∞  are located on the z  axis at 
z a= ±  and denoted in Figure 1 by 1F  and 2F . Surfaces of 

constant η  are given by spheres (described in Figure 2).

In the present system the electrostatic potential has cylindrical 
symmetry about the z  axis. It is therefore independent of the angle 
φ  and only the term 0m =  is retained. In Figure 2 we describe 
the coordinates η  for certain values of η  as function of the ,x z  
coordinates. The large circles represented by small values of η  are 

Figure 2: Bi-spherical coordinates in the ,x z  plane showing circles of constant 
bi-spherical radial coordinate η  where curves of constant polar angular α  with 

, / 2, / 3, / 6α π π π π= are perpendicular to these curves [3]. EM field polarized in the 
z  direction propagates in the x  direction. The curve for α π=  is along the z  axis.
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truncated in this figure. The surfaces of the spheres in the present 
system are given by bi-spherical coordinates 0η±  given by:

2 2
0 0 0

1sinh / ; cosh ; cotha R R a D a
R

η η η= = + =           (3)

This equation for 
0η η=  (

0η η= − ) represents in Figure 1 the 
upper (lower) sphere with radius R  where its center is moved from 
the center of the coordinate system by a distance D in the positive 
(negative) z  direction. In Figure 2 0η  should be chosen for a special 
value of η  which is related by Eq (3) to the parameters of Eq (1). The 
distance between the surfaces of the two spheres along the z  axis 
becomes very small relative to their radius for small values of η  (

0 1η η= < ). The two poles 1F  and 2F  are obtained at ,ψ ψ+ − .

Laplace-Equation Solutions for Two Metallic Spheres with 
Incident EM Field Parallel to the Symmetric Z Coordinate

We define ,ψ ψ+ −  and 1ψ  , respectively, as the potentials (with 
the condition 0m = ) inside the upper sphere, the lower sphere, 
and the surrounding medium, respectively. The potential due to the 
external field 0V  is assumed to be given by 0 0V E z= − . In the 
present article the external field is written in short notation as 0E . 
It is antisymmetric with respect to reflections through the xy  plane: 
z z→ −  or η η→ − .

The potential 1ψ  outside the spheres is given with the same 
symmetry as that of the external field potential:

( ) ( ) ( )1/2 0
1

0

sinh1, cosh cos sinh cos ;
2 cosh cos

sinh
cosh cos

n n
n

E aA n P

a z

ηψ η α η α η α
η α

η
η α

∞

=

  = − + −   −  

=
−

∑         (4)

where Pn are Legendre polynomials and An  are certain constants. 
Using the relation [16-20]:

( ) ( ) ( ) ( )1/2 1/2

0

cosh 2 2 1 cos n
n

n
z a cos n P e ηη α α

∞
+

=

= ± − +∑              (5)

where the upper (lower) sign holds for positive (negative) z  , Eq 
(8) is transformed to:

( )

( ) ( ) ( ) ( )

1

1/2 1/21/2
0

0

,

1cosh cos cos sinh 2 2 1
2

n
n n

n
P A n E a n e η

ψ η α

η α α η
∞

− +

=

=

   − + − +      
∑

(6)

For 0η η=  , and positive z , Eq (6) is transformed to:

( )

( ) ( ) ( ) ( )0

1 0

1/2 1/21/2
0 0 0

0

,

1cosh cos cos sinh 2 2 1
2

n
n n

n
P A n E a n e η

ψ η α

η α α η
∞

− +

=

=

   − + − +      
∑

(7)

From the fact that ψ+  and ψ−  have to be finite at the points: 
0 ;x y z a= = = ± , where: η = ±∞ , we obtain [16-20].

( ) ( ) ( ) ( )( )1/2 1/2

0
, cosh s exp cosn

n n
n

co B Pηψ η α η α α
∞

− +
+

=

= − ∑ ,         (8)

( ) ( )
1

1/2 2

0

, cosh cos exp (cos( ))
n

n n
n

B P
η

ψ η α η α α
 ∞ + 
 

−
=

= − − ∑   (9)

One should notice that the function 
1sinh
2

n η  +    
 is 

antisymmetric with respect to reflections through the xy  plane 
i.e. z z→ −  or η η→ −  in agreement with the symmetry of 

the external electric field. The general solutions for the potentials in 
the surrounding medium, and in the upper sphere are given by Eqs 
(6) and (8), respectively. But the coefficients nA  and nB  should be 
obtained from the boundary conditions.

Using Eqs (6-9) we get the EM potentials as function of the bi-
spherical coordinates. Transformation of these equations to be 
functions of the , ,x y z  coordinates can be made by using Eqs (2). 
The coefficients nA  and nB  are calculated as follows:

We use the first boundary condition given as:

0 1 0( ) ( )ψ η ψ η+ =    (10)

By using the equality (10) and comparing the corresponding 
expressions (7) and (8) for 0η η=  we obtain:

( )0
0

1
( 1/2)1/22

0 0
1exp sinh 2 2 1
2

n
n n

n nB A n E a n e
η

η
 − +  − +    = + − +    

                (11)

A second boundary condition can be used as [16-20]:

( ) ( )
0 0

1
1

, ,
( )

η η η η

ψ η α ψ η α
ε ω ε

η η
+

= =

∂ ∂   
=   ∂ ∂   

                               (12)

Using Eq (6) we get:

( )

( ) ( ) ( ) ( )

0

0

1 1

1/2 1/21/2
1 0

0

,

1cosh cos cos sinh 2 2 1
2

n
n n

n
P A n E a n e

η η

η

η η

ε ψ η α
η

ε η α α η
η

=

∞
− +

=
=

 ∂
= ∂ 

   ∂    − + − +     ∂        
∑

13)

Using Eq (8) we get:

( )

( )

0

0

1
1/2 2

0

,
( )

( ) cosh cos exp (cos )
n

n n
n

B P

η η

η

η η

ψ η α
ε ω

η

ε ω η α α
η

+

=

 ∞ − + 
 

=
=

∂ 
 ∂ 

  ∂  = −  ∂    
∑

(14)

The derivatives ( )
0

,

η η

ψ η α
η

+

=

∂ 
 ∂ 

 and ( )
0

1 ,
η η

ψ η α
η =

 ∂
 ∂ 

 include the 

local plasmons charges induced on the surfaces of the spheres. In the 
present work we follow the idea, that for treating the limits of large field 
enhancement in hot spots we can use the following approximation 
which will simplify very much the analysis:

a) Derivatives in Eqs (13) and (14) include derivatives according 
to η  of ( )1/2cosh cosη α−  in addition to the derivatives of the terms 
in the summations of these equations. Under the condition that δ  is 
much smaller than R  there are many nB  and nA terms including 
exponential terms with derivatives proportional to the integer n  
which are very large relative to the derivatives of ( )1/2cosh cosη α−  
so that the latter derivatives can be neglected for hot spots. The terms 

with larger value of n for ( )
0

,

η η

ψ η α
η

+

=

∂ 
 ∂ 

 and ( )
0

1 ,
η η

ψ η α
η =

 ∂
 ∂ 

represent 

more rapid decay of the local surface plasmons.

b) In the present analysis for hot spots we assume that nA  
and nB  are very large numbers so that for the purpose of using the 
boundary condition (12) the small term ( ) ( )1/21/2

0 2 2 1 nE a n e η− ++ can be 
neglected.
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By substituting Eqs (13) and (14) into Eq (12) and using the above 
approximations we get for the relation between 

nA  and 
nB :

1 0 0
1 1cosh ( ) exp
2 2n nA n B nε η ε ω η      + = − − +            

(15)

Here the common factors: ( )1/2cosh cosη α− , ( )nP cosα  , 
1
2

n + 
 

and the term of order n  proportional to 0E were neglected 

Eq (15) shows that for larger values of ( )ε ω−  the term nB  
becomes smaller. One should notice that while Eq (15) represents an 
approximate relation for hot spots, Eq (11) is exact one. One might 
notice that the above approximation b) was not included in [3]. We 
find now that although the derivative of ( )1/2cosh cosη α−  is small 
relative to the derivatives of exponential terms its contribution might 
be not small relative to the term with external field. So only by using 
both approximations the new relation (15) between nB  and nA  is 
approximately valid at hot spots.

By substituting Eq (15) for 0
1exp
2nB n η  − +    

into Eq 
(11) we get:

( ) ( )

1
0

1/21/2
0 0

1cosh
( ) 2

1sinh 2 2 1
2

n

n
n

A n

A n E a n e η

ε η
ε ω

η − +

   +   −    
   = + − +      

  (16)

By rearranging the terms in Eq (16) we get:
( ) 01/21/2

0

1 0 0

2 (2 1) ( ) ;
1 1cosh ( )sinh
2 2

n n

n
n E aeA for R

n n

ε ω δ
ε η ε ω η

− ++
= <
    + + +    

    

 (17)

One might notice that the expression for nA derived in [3] 
included the same denominator as in Eq (17) but the numerator 
becomes now different due to the use of the approximate relation of 
Eq (15). In the following analysis we develop new analytical results for 
EF  which were not obtained in previous works as they ended there 

only with numerical calculations.

By transforming the hyperbolic functions of Eq (17) to exponential 
terms we get:

( )

( )

0

0 0

1/21/2
0

1/2 ( 1/2)1 1

2 (2 1) ( ) ;
( (

2 2

n n

n
n n

n E aeA for R
e eη η

ε ω δ
ε ε ω ε ε ω

− +

+ − +

+
= <
 + −    +        

 (18)

We divide both numerator and denominator of this equation by 
( ) 01/2n ne− + . Then we get

[ ] ( ) [ ]{ }0

3/2
0

2 1
1 1

2 (2 1) ( ) ;
( ) ( )

n n

n E aA for R
e η

ε ω δ
ε ε ω ε ε ω+

+
= <

+ + −
              (19)

We note that the calculation of the coefficients nA  by the use of 
Eq (19) becomes quite simple as it can be derived in a straight forward 
way by the use of the parameter ( )ε ω and the experimental parameters: 

( )ε ω , and 1ε . The use of the present approach is limited, however, 
by the validity of Eq, (15) appropriate to hot spots. For more accurate 
calculations we should add the contribution of the derivatives of 

( )1/2cosh cosη α−  but this will complicate very much the analysis so 
that new results for EF  were not obtained [17-20].

For getting maximal EF  one uses metals of the type of Au  or 
Ag  which at certain frequencies ( )ε ω  is very large real negative 

value (taken as experimental parameter) with negligible imaginary 
value. In the following Section we will develop the equations with bi-
spherical coordinates for the electric field at the hot spots. We will 
develop further our equations by bi-spherical coordinates in Section 4 
for the limit of enhancement factor ( EF ) under the above conditions 
and approximations. The requirement of having large negative real 
value for the metals dielectric constant will be found to be a crucial 
parameter for large EF  [21-30].

The EM Field in Bi-Spherical Coordinates at the Hot Spots

The normal component of the EM field E


 for which 0m =  
[16] is related in the space outside of the two spheres to the gradient in 
bi-spherical coordinates given as:

1 1
cosh cos ˆ ˆE grad a a

a η α
η αψ ψ

η α
 − ∂ ∂

− = = + ∂ ∂ 

           (20)

where âη , âα  are unit vectors in the aα  directions, respectively, 
i e in the bi-spherical radial direction âη  and in direction 
perpendicular to âη .

Since the potential 1ψ  in bi-spherical coordinates is given in Eq 
(10) by sum of n  terms, the gradient in the normal η  direction is 
given by:

( ) 1cosh cos / ,n n
n n

dE a
dη η α ψ ψ ψ
η

− = − =   ∑ ∑         (21)

In the derivation for gradient of the potential for the normal 
component (in the radial direction) only derivatives relative to η  
are taken into account while 0η  and α  remain certain constants. By 
operating with Eq, (21) on ( )1 ,ψ η α  of Eq (10) we take into account 
only the derivatives of the terms proportional to nA  representing the 
amplified potential which is very large relative to the external potential 
terms 0E z− . Then we get:

( ) ( ) ( )1/2

0

1cosh cos / cosh cos sinh cos
2n n

n

dE a A n P
dη η α η α η α
η

∞

=

   − = − − +          
∑  (22)

Since the derivative of ( )1/2cosh cosη α−  relative to η  is very 
small relative to the derivatives of the sinh  functions (for 1δ <  
where the number of coefficients nA  is very large) we neglect this 
derivative and get

( )3/2

0

1 1cosh cos / ( ) cosh (cos )
2 2 n n

n
E a n n A Pη η α η α

∞

=

    − = − + +        
∑  (23)

Eq (23) gives the general solution for the radial EM field in bi-
spherical coordinates for hot spots for which 1δ <  and for which the 
coefficient nA  are given by Eq (19).

Following Figure 2 and previous analysis we find that the hot 
spot is produced in a region for which the bi-spherical coordinate α  
satisfy approximately the relation os 1cα π α= → = − . One should 
notice that the curve α π=  coincides with the z axis, connecting 
the two poles with η = ±∞ and it is perpendicular to all η curves. It 
leads to special values of the Legendre polynomials on the symmetric 
z  axis given by [3]:
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1
(cos( )) ( 1) ( 1)

1
n

n n

for any even number n
P P

for any odd number n
α

 
= − = − =  −   (24)

By substituting the value cos 1α = −  and Eq (24) into Eq (23) we 
obtain the result for the EM field in bi-spherical coordinates on the 
symmetric coordinate z  including the hot spot:

( ) ( ){ }
0

3/2 1 1cosh 1 / ( )  cosh 1
2 2

spot n
n

n
n n

E E

E a n n Aη η

∞

=

=

    = − + + + −        

∑
 (25)

We are interested in calculations of the total EM field intensity at the 
hot spot given by 2

spotE . We notice that in the calculation of 2
spotE  

we have non-diagonal products ' ( ')n nE E n n≠  with alternating 
signs so that their total contribution approximately vanishes. We 
consider therefore only the diagonal incoherent elements. Then for the 
electric field amplified factor 2

spotE  and for the SERS measurements 
which are proportional to 4

spotE  we get:

( )

max

max

22

0

3/2

2
24

0

;

1 1cosh 1 / ( ) cosh ;
2 2

n

spot n
n

n n

n

spot n
n

E E

E a n n A

E E

η η

=

=

 
=  
 

    = + + +        

 
=  
 

∑

∑

 (26)

We should take into account that 2
spotE  gives the electric field 

squared at the hot spot where products of nE  with 'nE  ( 'n n≠  
) vanish due to the approximation made after Eq (24). We should 
consider also that SERS measurements depend on 4

spotE  so it is 
obtained by the square of the sums of Eq (26) (as demonstrated later 
in Section 4). We inserted in Eqs (26) the maximal value maxn  which 
guarantees summation convergence but in the analytical calculations 
we allow this value to tend to ∞ . Transformations of the η  coordinate 
to be a function of the z coordinate were developed in previous work 
but here we develop the explicit results for EF at the center of the 
hot spot for which 0η = . Then Eq (26) is transformed to simpler 
form as:

3/2 12 / ( )
2n nE a n A  = +    

            (27)

The η  coordinates for the hot spots are in the range 00 η η≤ ≤ so 
that we expect that for larger values of η  we will get larger values 
of nE  corresponding to larger values of the cosh  functions. While 
such effect might be important, for cases for which 

0 1η < such effect 
will be relatively small so that Eq (27) still gives an approximate order 
of magnitude to Eq (26).

Analytical Results for Maximal Field-Enhancement ( EF ) 
at the Center of the Hot Spot

The electric field nE at the center of the hot spot is obtained by 
inserting Eq (19) into Eq (27) with summation over n . Then we get:

[ ] ( ) [ ]{ }0

3/2
3/2 0

2 1
1 1

2 (2 1) ( )2 ( 1/ 2)
( ) ( )

n n

n EE n
e η

ε ω
ε ε ω ε ε ω+

+
= +

+ + −
   

 (28)

We define the light intensity as 2

0
n

n
I E

∞

=

 =   
∑ . Then the 

amplification of the light intensity at the center of the hot spots is given 
by: ( )

[ ] ( ) [ ]{ }
( ) ( )

( ) ( )( )
( ) [ ] [ ]

0

0

2
2 3/2

3/2
2 2 1

0 000 1 1

222
16

1 122 10

2 2 1 ( )12 ( )
2 ( ) ( )

2 1 ( ) / ( )12 ( ) ; ( ) / ( )
2

n
n

n n

nn

nEI n
EE e

n
n G

e G

η

η

ε ω

ε ε ω ε ε ω

ε ω ε ε ω
ω ε ε ω ε ε ω

ω

∞ ∞

+
= =

∞

+=

    +    = = + =     + + −      

+ +  + = − +
+

∑ ∑

∑

 (29)

One might notice that the parameter ( )G ω  in the present 
analysis is based on the new equation (15)

Eq (29) can be converted approximately to the following integral:

( ) ( )
( )( )0

2 4
2 10

12 21/2 2
00 00

1/ 2
( ) / ( ) 2

( )

n
n

n
n

nEI dn dn
EE e Gη

ε ω ε ε ω
ω

=∞ ∞

+
=

+
= = +  

+
∫ ∫  (30)

Eq (30) was transformed by using the definitions:

0 0( 1 / 2)2 ; 2n x dx dnη η+ = =  (31)

and given approximately as

( )
( ) ( )

2 10 4
2

12 5 2
00 000

2( ) / ( )
2 ( )

n
n

x
n

EI xdn dx
EE e G

ε ω ε ε ω
η ω

=∞ ∞

=

= = +  
+

∫ ∫
 (32)

By assuming a very large real negative value of ( )ε ω we get 
from Eq (29) the approximation ( ) 1G ω → −  , Then by using this 
approximation in Eq (32) we get:

( )
( ) ( )

( )
( )

[ ]

10 4
2

12 5 2
000

10
2

1 5
0

2( ) / ( )
2 1
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ε ω ε ε ω
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ε ω ε ε ω ς ς
η

∞

= + =  
−

+ Γ −  

∫          (33)

The integral in Eq (33) is obtained by using the corresponding 
integral from Gradshtein and Ryzhik book [31] where ( )nΓ is the 
Gamma Function and ( )nς  is the Riemann Zeta Function with the 
values.

(5) 24 ; (4) 1.08232323 ; (5) 1.03692775ς ςΓ = = =  (34)

Inserting these values in Eq (33) we get:
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As the amplified field in SERS measurements is proportional to 
the fourth power its field enhancement factor ( EF ) is given by the 
square of Eq (35) i e ,

( ) ( ) ( )
2

5 10
0
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0

4
1 1/ ( ) ( )34. (87 1) / 216EF ε ω ε ε ω ε ω ε ε

η η
ω= + +   

   
=   


 


 

 

  (36)

Eqs (35-36) represent very fundamental results by which the 
maximal enhanced light amplification factor for symmetric metallic 
dimers is proportional to 5

0η
−  and the EF  for SERS measurements 

is proportional to 10
0η
− . These analytical results are valid under the 

conditions 2 1δ < , and ( ) [ ] [ ]1 1( ) / ( ) 1G ω ε ε ω ε ε ω= − + → − . 
For cases in which ( ) [ ] [ ]1 1( ) / ( ) 1G ω ε ε ω ε ε ω= − + >  the integral 
in Eq. (32) is changed reducing much its value. It is verified by our 
calculations by which:

( ) ( )
4 4

2 2
0 0

/ ( )
( ) 1x x

x xdx dx F
e G e

ω
ω

∞ ∞

=
+ −

∫ ∫              (37)

For example, for ( ) [ ] [ ]1 1( ) / ( ) 1.1, 1.2, 1.3G ω ε ε ω ε ε ω= − + = − − −  we 
get, respectively, ( ) 0.707,0.232,0.159F ω =  so that the integral in Eq 
(32) becomes smaller and the light intensity of Eq (35) is decreased by 
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the function ( )F ω . The EF of Eq (36) is decreased by this function 
squared (The changes in the coefficient ( )1( ) / ( )ε ω ε ε ω+  are 
relatively smaller). An important conclusion from the present analysis 
is that for getting maximal EF we need to use metals which have 
large real negative value for ( )ε ω  i.e. using metals like uA or gA
at certain frequencies. For hot spots for which we have the condition 
2 1δ <  we can use the approximations:

2 2
0 0

22 ; sinh aa D R R
R R

δδ η η= − = = = =              (38)

We find that the critical parameter 0η  for the symmetric 

spherical dimers is 0
2 d
R R
δη = =  where 2d δ=  is the shortest 

distance between the two spheres. We estimate that in more general 
nano particles gaps the critical parameter will be the ratio between the 
length of the gap and the metallic curvature around it.

Conclusion
In the present work we treated the mechanism by which “hot 

spots” are produced in the system of two metallic spheres with the 
same radius R  interacting with incident homogeneous EM field 
polarized in the symmetric z  direction. Hot spots with huge EM 
field are produced by local plasmons at a small gap with nanoscale 
dimensions. Such hot spots are measured by surface enhanced Raman 
spectroscopy (SERS) and two-photon induced luminescence (TPI-
PL). These effects depend on the fourth power of the EM field at the 
hot spot where the measured molecules are inserted. The present 
analysis is based on theoretical solution of Laplace equations using bi-
spherical coordinates with certain values for the dielectric constants of 
noble metals. In the present system the fourth power of the EM fields 
at the hot spot turns to have extremely large values when the shortest 
distance between the spheres surfaces 2δ  is very small i e , when 
2 1δ < . We developed in the present article certain approximations 
suitable for hot spots. In the present system in which the external EM 
is in the symmetric z  axis the potential has cylindrical symmetry 
about the z  axis. Therefore the potential 1( , )ψ η α  at the hot spot 
developed in Eq (10) is function of the bi-spherical coordinates ,η α  
, where  represents the distance from the bi-spherical coordinates 
center and ,η α  represents an angle from this reference direction. The 
coordinates ,η α  can therefore be described as bi-spherical polar 
coordinates in the ,x z  plane of Figure 1, and these coordinates are 
not changed by rotation around the z  axis. The potential 1( , )ψ η α  
is proportional to summation of Legendre polynomials ( )nP α  
with proportionality coefficients nA and sinh  function. The last 
term on the right side of Eq, (10) represents the external potential 

extV Ez= −  where z  is defined in bi-spherical coordinates in Eq 
(2), and 0E  denotes, in short notation, the external EM field. By 
using the boundary conditions, we obtained after some calculations 
and certain approximations a general equation for the coefficients nA  
in Eq (19). General solution for the EM field in the bi-spherical radial 
direction η  is derived in Eq (23). Amplified EM field is found to be 
proportional to sum of products of the coefficients nA  with Legendre 
polynomial (cos )nP α  and with cosh  function. As the hot spots 
in dimers are produced on (or near) the symmetric z  axis, for which 

0x y= =  we simplified the calculations by using this condition and 

used the relation: cos 1α = −  simplifying the expression for Legendre 
polynomials. The use of bi-spherical coordinates is demonstrated in 
Figure 2. In Section 4 we developed analytical results for the field 
enhancement factor ( EF ) at the center of the hot spot. Although 
the electric field has a complicated dependence on the coordinate z  
for simplicity of calculation we used Eq (27) for the hot spot center. 
The final results are given in Eq (35) in which the maximal light 
amplification factor is proportional to 5

0η
−  and in Eq (36) in which 

the maximal EF  for SERS measurements is proportional to 10
0η
−  

where 
0

2 d
R R
δη = =  and 2d δ=  is the shortest distance between 

the two spheres. The present article is based on classical model but 
when the gap length is of an atomic scale quantum effects become 
important [32].
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