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The Endocrine Disruptors (EDCs) are defined as “exogenous 
chemical, or mixture of chemicals, that interfere with any aspect of 
hormone action”, and in 2015, the Endocrine Society convened a large 
group of experts to review in-depth the state of science on EDCs [1]. Over 
the years a massive accumulation of data supports growing concern on 
EDCs’ harmful effects on humans and all other living organisms.

A. Why Do We Care so much about EDCs?
1. We care because EDCs interfere with the normal function of the 

endocrine system and can harm every organ of a living organism.

2. EDCs are especially dangerous for the developing fetus and 
their effects can persist to affect early life, adulthood, and even 
follow to the next generations.

3. EDCs are present in food, water, air, soil, cosmetics, medicines, 
toys, and other items. They accumulate in living organisms 
and the aquatic species are particularly vulnerable.

B. What Do We Need to Know for Efficient Detection 
and Monitoring of EDCs?

1. The status on the methods of detection  

C. Why Do We Need Public Awareness of EDCs Effects?
Because their presence in the environment is not well sufficiently 

regulated, and the screening methods do not always include a 
biological read-out. An excellent example is Bisphenol A (BPA) which 
was synthesized in 1936 as an estrogenic compound. Subsequently it 
was discovered that BPA activates other nuclear receptors, including 
thyroid receptor (TR). Despite recent restrictions, BPA is one of 
the highest production-volume chemicals used in manufacturing 
polycarbonate plastics and epoxy resins.

1. Several major manufacturers of baby bottles removed BPA 
from their products after a public outcry.

2. Unfortunately, all of us have BPA in our bodies because it is 
in food, household, and industrial items, including linings of 
canned foods and drinks.

D. Why are We Still Deliberating about Harmful 
Effects of EDCs?

1. The major reasons are that we lack uniform agreement 
among scientific community on “safe” levels of EDCs. Some 
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consider that any exposure is unacceptable, while others call 
for establishing a low dose limit for specific products.

2. Regulatory agencies world-wide have not provided sufficient 
restrain for continuing accumulation of EDCs in the 
environment.

3. Industry and environmental non-government organizations 
present conflicting information, and the lay press 
oversimplifies the research results, leading to a confusing state 
of information for many EDCs.

A. Why Do We Care so much about EDCs?

The endocrine system evolved to respond to very low levels of 
hormones [2-4]. Because of common receptor-mediated mechanisms, 
EDCs that mimic natural hormones are likely to have biological 
effects in humans and other species [4-6]. Moreover, small changes 
in hormonal concentrations can have biologically important 
consequences [2,4]. Thus, EDCs can have adverse effects on living 
organisms, and even low doses of contaminants cannot be ignored.

Many EDCs exert their effects as agonists or antagonists by direct 
interaction with hormonal receptors: estrogen (ERs), progesterone 
(PR), androgen (ARs), thyroid hormone (TRs), and with nuclear 
receptors that regulate metabolism and differentiation, such as aryl 
hydrocarbon (AhR), retinoid X (RXR), peroxisome proliferator-
activated (PPARs), liver X (LXRs), and farsenoid X receptors (FXRs) 
[7]. Following ligand binding, the receptors become transcription 
factors that regulate expression of many genes.

The most sensitive time for exposure to EDCs is during fetal 
development [8]. Some EDCs affect fetal development in late 
pregnancy [9] whereas others are harmful even before the woman is 
aware of her pregnancy [10,11]. EDCs can also lead to harmful traits 
carried over to future generations (transgenerational effects) [12], 
although they do not induce changes in DNA sequence [13]. Thus, 
the harmful effects may not be immediately apparent, which makes it 
difficult to discern from other causes.

Long-lasting effects on male and female fertility in several species 
are particularly of concern [14,15] and the decline in male and female 
fertility has been detected world-wide [16]. Detection of EDCs in 
blood, urine, milk, and tissues showed alarming results reflecting 
global exposure [10].
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EDCs can harm every organ in the body. Let’s start with the brain. 
EDCs can change the expression, abundance, and distribution of 
steroid hormones and other nuclear receptors in the developing brain. 
There are multiple documented functional consequences of altered 
receptor action in fish brain and the most widely studied compounds 
are BPA and polychlorinated biphenyls (PCBs) [17,18]. All living 
organisms that consume untreated water are exposed because water 
is frequently contaminated by pollutants originating from municipal 
and industrial wastewater effluents, as well as runoffs from livestock 
and agricultural areas.

In addition to harmful effects on the brain, perinatal exposure 
to low doses of BPA causes metabolic derangements: increased body 
weight; adiposity; alterations in blood levels of insulin, leptin, and 
adiponectin; as well as a decrease in glucose tolerance and insulin 
sensitivity in an age-dependent manner [19-21].

One of most studied group of EDCs are estrogenic compounds 
which regulate estrogen receptor (ER) with broad effects on 
bone mineralization, immunity, male and female reproduction, 
metabolism, and many other biological processes. The presence of 
estrogenic substances in the environment has been known for over 
a century and increased significantly across the globe in the last 50 
years. Clover species were documented to contain high amounts of 
estrogen receptor-activating compounds leading to reproductive 
disorders in cows and sheep fed with clover-rich diet [22]. Because 
hormonal synthesis and their world-wide use exploded during the 
1940’s, toxicologists noticed their presence in the environment and 
described the effects on organisms. In US, studies in 1965 [23], in 
1970 [24] and thereafter increased public concern for estrogenic 
chemicals. Although in 1990 the United States Congress updated the 
US Safe Drinking Water Act to include screening programs to detect 
estrogenic contaminants, harmful effects of estrogens [25,26] and 
progestogens, specifically on fish reproduction, have been increasingly 
documented [27,28].

Thyroid hormone (TH) disruptors are also of particular concern 
because they govern neurodevelopment and metabolic homeostasis. 
Exposure during pregnancy has been linked to the rise in autism 
and cognitive disorders [29-32], as well as increased risk to develop 
thyroid cancer [33]. Because TH cooperates with progesterone during 
implantation, TH disruptors also impair pregnancy [34]. Thyroid 
receptor interacting compounds are widely spread in the US rivers 
[35,36]. The agonists and antagonists are especially prevalent in 
water downstream of intense urbanization and livestock production. 
Triiodothyronine (T3)-like activity are reported in effluents from 
water treatment plants (WWTP) in Japan [37], and anti-T3 hormonal 
activity was found in WWTP effluent in Thailand [38].

Weakened immune systems with increased susceptibility to 
infections are likely due to exposures to glucocorticoids alone or in 
combination with other EDCs, have been associated with fish kills 
[39-42].

These are only a few examples of well-documented studies on 
harmful effects of EDCs.

B. What Do We Need to Know for Efficient Detection 
and Monitoring of EDCs?

Because of the growing concern on contamination of the 
environment [1,37,38,43-46], significant attention and investment has 
been devoted to their detection [47]. Laborious chemical methods 
of isolation and identifications by a combination of HPLC, liquid 
or gas chromatography and/or mass spectroscopy, were followed by 
“omic” approaches (genomics, transcriptomics, proteomics, and/
or metabolomics) in fish and other affected organisms [48,49]. 
Unfortunately, these assays are laborious, costly and identify only a 
single compound. In addition, lack of uniform quantification and 
uncertainty of their biological effects limit their use. Thus, analytical 
strategies based on target chemical analyses have been insufficient to 
depict meaningful environmental contamination.

Technical innovations using luciferase reporters or fluorescent 
tags in genetically engineered yeast, mammalian cell lines, or whole 
organisms, such as zebra fish, led to development of assays in which the 
read-out is a biological effect elicited by a specific receptor [35,36,50-
53]. Many of these methods are sensitive in the below nanomolar 
range, amenable to high throughput and do not require identification 
of ligand’s chemical structure.

C. Why Do We Need Public Awareness of EDCs Effects?

Extensive documentation on the adverse effects of exposure to 
BPA on reproduction and development, cardiovascular, neurological, 
metabolic, and immune systems [54,55], led to reduction of reference 
dose by European Food Safety Authority, stronger restrictions and 
regulations on the production and usage of BPA in North America in 
1990, European Union and in Canada in 2010 [56]. It was estimated 
that 93% of Americans have measurable amounts of BPA in urine 
[57,58] and because of the wide-spread contamination with BPA, 
these levels are likely to persist. After substantial public pressure, in 
2008 six major manufacturers of baby bottles removed BPA from their 
products and the trend continues in developing BPA-free goods and 
materials.

However, many recently developed BPA analogues have also 
been detected in the environment. Some have similar estrogenic, 
antiandrogenic and TH disrupting activities [59]. Thus, sustained 
public awareness and negative publicity is needed to remove BPA 
and its analogs to prevent further environmental contamination and 
human exposure.

D. Why are We Still Deliberating about Harmful Effects 
of EDCs?

Lack of consensus in the scientific community on quantitative 
methods for detection and “safe” levels of sex hormones in the 
environment and other EDCs is a major obstacle for development of 
a rational policy for efficient monitoring and establishing safety limits 
to protect wildlife and human health. Scientific evidence indicates 
complex mechanisms operating at low doses showing nonmonotonic 
dose-response curves (2). A largely unexplored issue is the combined 
effect of a mixture of EDCs detected in the same sample. Many water 
sites have several EDCs that interact with glucocorticoid, estrogen, 



Cancer Stud Ther J, Volume 7(1): 3–4, 2022 

Lyuba Varticovski (2022) Opinion: Why Should We Care about Endocrine Disruptors? 

progesterone, thyroid, aryl hydrocarbon and other nuclear receptors 
[35,52,60-63]. The combinations further modify the biological 
outcomes as these mixtures are likely to have unexplored effects on 
target tissues [4,64]. Interactions with receptors, nuclear cofactors, 
and chromatin remodelers through “assisted loading” mechanisms 
further modify gene expression [47,65,66]. Some of these epigenetic 
changes may be long-lasting and possibly inheritable.

As presented in this Opinion, scientific evidence linking EDCs 
to health effects is strong, but regulations have not kept up with the 
endocrine science. Despite EPA regulation in US, and WHO efforts 
in periodic updates (most recently in 2012) the state of science on 
contamination of water, air and soil, EDCs threaten the integrity of the 
planet’s ecosystems and pose serious concerns for human and animal 
health [1,46].

The potential to link epidemiological studies with individual 
exposure assessments is now feasible. Current eHealth programs, 
such as All-of-Us, can be critical in evaluating pathophysiology and 
establishing the temporal relationship between markers of exposure 
and long-term effects. This is the time for high-level meetings to bring 
together all critical players with the twin goal of sharing information 
and considering options for investment in global EDCs detection 
and monitoring. Only then we can advise on regulatory policies with 
particular emphasis in relation to human disease. Virtual platforms, 
popular since 2020 during the COVID-19 pandemic, can make such 
efforts possible. Scientific knowledge gives national and international 
agencies an informed opinion on controlling specific aspects of 
environmental contaminants. A coordinated program encompassing 
governmental and public organizations and industry leaders with 
scientists would enable a science-based approach to better understand 
and halt the impact of EDCs pollution on ecosystems and human 
health.
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