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Heparan sulfate (HS) is a sulfated glycosaminoglycan that is 
deposited in human tissue matrices at specialized sites [1,2]. HS 
interacts with diverse extracellular matrix (ECM) components with 
HS binding sites, including inflammatory cytokines, and heparin-
binding growth factors (HBGFs) [3,4]. Within the ECM and in the 
cell surface glycocalyx, HS-proteoglycans (HSPGs) act as reservoirs 
for cytokines and HBGFs, and as cofactors for surface receptors where 
they stabilize active signaling complexes [5–7]. The bioavailability 
and activity of HBGFs stored on HSPGs are primarily regulated 
by HS-modifying enzymes that act on HSPGs, such as perlecan, 
the syndecans and the glypicans [8,9]. Therefore, HSPGs and their 
enzymic modifiers are crucial for tissue homeostasis, both in normal 
biology, as in development and wound healing, and in pathological 
processes such as fibrosis and cancer biology [1,10,11]. To date, 
studies have identified three key extracellular enzymes that modulate 
HS function and growth factor signaling: tissue heparanase (HPSE) 
and the extracellular endosulfatases SULF1 and SULF2. HPSE is 
an endoglycosidase that cleaves HS chains yielding diffusible HS 
fragments [12] that often still retain bound growth factors (Fig. 1A). 
HS-bound growth factors can subsequently bind to surface receptors 
to form HS-HBGF-receptor ternary complexes (Fig. 1B) [12]. Like 
HPSE, SULFs are secreted but, for the most part, stay peripherally 
associated with the cell surface through the interaction with HSPGs in 
the glycocalyx, primarily syndecans and glypicans [13,14]. Enzymatic 
activity of SULFs involves selectively removing 6-O-sulfate groups 
from HS polymers (Figure 1A) [14,15]. Because many HBGFs require 
6-O-sulfate for high-affinity binding to HSPGs or surface coreceptors 
[3,15,16], SULFs release HBGFs in a form free from HS chains. Freed 
HBGFs can bind subsequently to cognate cell surface receptors to 
form signaling complexes, or they may rebind to distant unmodified 
HSPGs that retain 6-O-sulfate. Therefore, both HPSE and SULFs are 
crucial enzymes that define activation parameters of HS-independent 
signaling networks in both positive and negative ways that often are 
context-dependent [17,18]. 

Better understood than the SULFs, HPSE generally is regarded as 
a tumor promoter. Cleavage of HS by HPSE releases and increases the 

availability of HBGFs, including vascular endothelial growth factors, 
hepatocyte growth factors [19–22] and fibroblast growth factors 
[23–26], thereby improving their access to their cell surface receptors 
and enabling downstream growth signaling. Consequently, HPSE 
can stimulate pro-tumorigenic processes including neoangiogenesis, 
tumor cell proliferation and invasion, inhibition of apoptosis, and 
metastasis, all among the well-accepted hallmarks of cancer [27,28]. 
Because of the intricacies from potential outcomes of SULF activity, 
predicting their impact on complex microenvironments, a priori, such 
as tumors, is more complicated. Numerous studies have implicated 
the SULFs as significant players involved in critical aspects of cancer 
progression, including proliferation, invasion and metastasis [1,15]. 
The expression of these intriguing enzymes is abnormal in many 
carcinoma cells, yet no consensus conclusion has been made as to 
whether they support or inhibit general cancer progression. Some of 
this confusion may be attributed to differences in regulation of gene 
expression between SULF1 and SULF2. For example, tumor necrosis 
factor α (TNFα) [29] and Wilm’s tumor transcriptional factor [30] 
stimulate SULF1 expression to a greater extent than SULF2. In contrast, 
SULF2, but not SULF1, is a p53 target [31]. A comparison of potential 
transcription factor binding sites (TFBS) in the SULF1 and SULF2 
promoter regions in silico revealed that ~50% of TBFS were not shared 
between these two genes [32]. Therefore, dysregulated transcriptional 
programs and different transcriptional targeting in SULF genes both 
in cancer cells and cells in the tumor microenvironment may partially 
explain some of the apparently contradicting data concerning SULF 
functions in tumorigenesis.

A review of studies focusing on SULFs and published in the past 
twenty years reveals contrasting expression levels and opposing effects 
on tumor growth depending on the type of cancer and the surrounding 
microenvironment. For instance, an analysis of SULF1/SULF2 in 
various cancer cell lines suggested a mostly tumor-suppressing role 
of SULFs [33]. In contrast, other researchers demonstrated that high 
SULF1 or SULF2 levels correlate with poor prognosis in a wide range 
of tumor types [34]. Additionally, contrary to SULF2, SULF1 can exert 
a tumor suppressor effect in cancers, including myeloma, ovarian, 
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head and neck, breast, liver, and pancreatic [33,35–39] cancers, 
despite being upregulated in others [40]. The paradox of how SULFs, 
sharing essentially identical target specificity, have different biological 
functions remains an open research question. In seeking to reconcile 
these observations, an essential point to consider is the signaling 
context. Most of the studies mentioned above solely focused on the 
cancer compartment, where cultured cells respond to artificially 
supplied HBGFs. However, there is overwhelming evidence that 
associated “bystander” stromal cells play a vital role in the regulation 

of tumor growth [41–13]. Cancers with reduced expression of HPSE 
or the SULFs still may be impacted by the actions of these enzymes 
in scenarios where they are being produced by cancer-associated 
fibroblasts (CAFs) and/or tumor-associated macrophages (TAMs). In 
recent years, the role of immune cells in cancer progression has gained 
increased attention. TAMs stand out as a major cell population in the 
tumor stroma [44] where they can, together with CAFs, modulate the 
expression of matrix remodeling enzymes, HSPGs, and HBGFs via 
pro- and anti-inflammatory cytokines [45–48] (Fig. 1D).

Figure 1. HS-modifying enzymes HPSE and SULFs release HBGFs with outcomes that are influenced by context. A. HPSE directly 
cuts HS chains to increase availability of HBGFs bound to HS fragments, while SULFs remove 6-O-sulfate residues (light blue circles) 
and release HBGFs free of HS. B. HS can act as a cofactor and stabilize HBGF binding to receptors via ternary complexes, while other 
factors transduce their signals via binary complexes. C. Spatial distribution of HPSE and SULFs produce opposing signaling effects when 
these enzymes act at the cell surface versus release factors bound in the ECM. At the cell surface, SULFs can disrupt ternary complex 
formation by HS desulfation, inhibiting downstream signaling. D. Infiltration and activation of tumor-associated cells, both TAMs and 
CAFs, contribute to regulation of HPSE and SULF expression and enrich the tumor milieu with HSPGs and HBGFs.

Also part of the signaling context controlling cell behavior are 
the specific ligands and their binding preferences to various HS 
modifications, spatial distribution of the enzymes themselves, cellular 
composition of the microenvironment, and the combination of 
HBGFs and cytokines present. Examples of such variations include 
whether: 1) ligands require HS fragments as cofactors for ternary 
complex signaling (Fig. 1B); 2) desulfation results in HBGF release or 
disruption of cofactor potential; 3) the enzymes are more abundant at 
the cell surface or in the ECM (Fig. 1C); 4) a robust reactive stroma 
response supporting cancer progression is present. While SULFs have 
been shown to suppress signaling at the cell surface through disruption 
of coreceptor functions, their release of HBGFs from fibroblasts in a 
desmoplastic stroma might favor growth. To date, studies exploring 

the influence of these different aspects of the signaling context 
are scarce, primarily from a lack of in vitro model systems that 
can reproduce the convoluted tumor microenvironment. Recent 
improvements in bioengineered cancer tissues are changing this, and 
new insights are on the horizon. While several HPSE inhibitors have 
reached and/or are currently undergoing clinical trials [49,50], no 
drug targeting the SULFs specifically has reached the clinic. Given the 
diverse nature of SULF expression and opposing activity in different 
contexts, as discussed above, targeting SULFs for cancer therapy is 
a complex endeavor. A key concern relates to the consequences of 
potentiating or inhibiting SULF activity. While silencing SULFs can 
lead to anti-tumor effects in some cancers, in others where they act as 
tumor suppressors, SULF inhibition could enhance tumorigenicity. A 
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significant amount of pre-clinical work is needed to understand the 
full repertoire of pro- and anti-tumor activities of the SULFs such that 
SULF-based therapies can be designed with confidence. Nonetheless, 
the undeniable involvement of HPSE and SULFs in regulating cancer 
progression makes these enzymes attractive both as therapeutic 
targets and prognostic indicators of tumor progression. 
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