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Background

Obesity is a risk factor for cancer development and is associated with poor prognosis in multiple tumor types. There is emerging evidence of a strong 
association between obesity and gastrointestinal cancer. The molecular mechanism underlying gastric cancer invasion and metastasis is still poorly 
understood. Problem of disseminated tumor cells (DTCs) in gastric cancer remains to be relevant for clinics and less is known concerning this problem 
for patients with obesity. 

Aim 

This study was aimed to evaluate how incidence of DTCs in bone marrow is conditioned by excess of adipocites in tumor microenvironment of patients 
with gastric cancer and obesity.

Results 

There was not found the associations between availability of DTCs in BM as well CXCR4-positive cells in tumor and body mass index (BMI) but 
incidence of DTC in BM was associated with high density of cancer-assocsated adipocytes (CAAs) as well with high number of CXCR4-positive cells in 
tumor of patients with BMI<25 and BMI>25<30 but it was not true for patients with BMI>30 where frequency of DTCs finding in BM was significantly 
decreased and that was statistically significant.

Conclusion

In patients with BMI>30 high density of CAAs and high number of CXCR4-positive cells in tumor may create specific tumor microenvironment that 
prevent tumor cells to leave primary lesion.

Obesity is associated with poor prognosis in multiple tumor types [1]. There is emerging evidence of a strong association between obesity and 
gastrointestinal cancer [2]. In contrast to the convincing evidence that obesity (measured by body mass index, BMI) increases the risk of many different 
types of cancer, there is an ambiguity in the role of obesity in survival among cancer patients [3, 4]. Some studies suggested that higher BMI decreased 
mortality risk in cancer patients, a phenomenon called the obesity paradox [1]. Changes that occur in the obese state and the biologic mechanisms 
underlying the connections of these changes to increased cancer risk are poorly understood [5–6]. Many types of solid tumors grow in proximate or 
direct contact with adipocytes and adipose-associated stromal and vascular components. During interaction with cancer cells adipocytes dedifferentiate 
into pre-adipocytes or are reprogrammed into cancer-associated adipocytes (CAAs) that modulate the tumor microenvironment by promoting 
angiogenesis, affecting immune cells and altering metabolism to support growth and survival of metastatic cancer cells [7]. Quail D et al. indicate that 
special consideration of the obese patient population is critical for effective management of cancer progression [8].

During tumor progression, cells can acquire the capability for invasion and metastasis to escape the primary tumor, first of all, from breast, lung, 
colorectal and prostate, and colonize new organs [9, 10]. Tumor cells leaving primary site can settle mainly in bone marrow (BM) as a common homing-
organ for disseminated tumor cells (DTCs) with potency to form the metastases [11–13]. The most important factors controlling cellular migration are 
chemokines and their receptors. Stem cell receptor CXCR4 as a transmembrane chemokine receptor and its specific ligand CXCL12 (stromal cell-derived 
factor 1, SDF-1α) play a vital role in dissemination of tumor cells from primary sites, transendothelial migration as well as homing of cancer stem cells. In 
the tumor microenvironment under hypoxic condition cells of a growing tumor are reprogrammed to express the CXCR4 receptor thereby enhancing the 
metastatic potential of the tumor cells. [14–17]. The molecular mechanism underlying gastric cancer invasion and metastasis is still poorly understood. 
Problem of DTCs in gastric cancer remains to be relevant for clinics [18] and less is known concerning this problem for patients with overweight and 
obesity [19]. Therefore our study was aimed to evaluate how of CAA density, CXCR4 expression in primary tumor affect presence of DTCs in BM of 
patients with gastric cancer according to the body mass index (BMI).
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Patients and Methods

Patients 

A total of 94 patients (60 men and 34 women) with primary gastric 
cancer were diagnosed and treated at the City Clinical Oncological 
Center (Kiev). No patient received any pre-operative anti-cancer 
therapy. Tumors were classified and staged according to the 2002 
version of the UICC staging system [20]. Histological types of tumor 
were evaluated by WHO histological classification (2000) [21]. Tissue 
samples were taken immediately after tumor excision. Preoperatively, 
2.0–3.0 ml of BM aspirates from the sternum with conventional 
cautions to avoid the hit of skin epithelial cells into the sample were 
obtained. All patients were thoroughly informed about the study that 
was approved by the local ethics committee.

Immunocytochemical Examination of Bone Marrow

Detection of tumor cells (cytokeratin-positive cells, CK-positive 
cells) in BM cytospin preparations fixed in acetone was provided 
by APAAP method (alkaline phosphataseantialkaline phosphatase) 
and visualization system EnVision G/2 System/AP Rabbit/Mouse 
(Permanent Red) (Dako Cytomaiton, Denmark). Monoclonal mouse 
antibodies against panCK (clone AE1/AE3, Dako Cytomation, 
Denmark) were used as primary antibodies. Each assay was controlled 
negatively by staining of one cytospin preparation with nonspecific 
IgG1 (MOPC21, Sigma). Number of tumor cells (CK-positive cells) 
was expressed on 106 BM mononuclear cells. BM samples were scored 
“positive” if the presence of two or more CK-positive cells per 106 
mononuclear cells were detected (from 6 to 12 slides per patient were 
screened).

Immunohistochemical Examination of Tumor Tissue

Expression Perilipin (Plin5+) as a marker for viable adipocytes as 
well expression of CXCR4 were provided on deparaffinized slides using 
specific polyclonal rabid antibodies (Perilipin-5/OXPAT Antibody, 
Termoscientific, USA) dilution 1:200 and specific monoclonal mouse 
antibodies: clone AB2074 (Abcam, UK), respectively. Slides for 
evaluation of Plin5+ were covered with 1% of bovine serum albumin  
(BCA) and incubated with polyclonal antibodies during for 1hour and 
then washed in phosphate-buffered saline (PBS). Immunoreactions 
were detected and visualized with the polymer-peroxidase method 
(EnVision+/HRP and 3, 3-diaminobenzidine; DakoCytomation, 
Denmark) followed by counterstaining with Mayer hematoxylin. 
Negative control was employed in which the primary antibody was 
replaced by phosphate-buffered solution (PBS). Immunopositive cells 
were counted per 1000 cells in each slide and the number of positive 
cells was reported as percent. When the tumor consisted of more than 
10% of CXCR4-positive cells, the case was scored as positive.

Body mass index (BMI, kgm−2) 

Patients were classified according to BMI, following the WHO 
definitions, as underweight, normal (18.5–<25.0 kg/m2), overweight 
(25.0–<30.0 kg/m2) or grade 1 obesity (30.0–<35.0 kg/m2). 

Statistical Analysis 

All statistical analyses were conducted using the NCSS 2000/PASS 
2000 and Prism, version 4.03 software packages. Prognostic values of 
relevant variables were analyzed by means of the Cox proportional 
hazards model using Odds ratio and χ2 test. Two-tailed P values <0.05 
were considered statistically significant.

Results

CAAs in Tumors of Patients According to BMI

Individual patient data from a total 94 histological confirmed 
gastric cancer patients were included in this study. Median number 
of CAAs in tumors was 26.5%. We defined this number as the cut-
off value and classified all cases into high- or low-density groups. 
Overall, 48.4% of tumors were characterized by a low density of CAAs 
and 51.6% by high CAAs during follow-up. 39.5%, 46.4%, 89.5% 
of patients with BMI<25, BMI>25<30, BMI>30, respectively, had 
high CAAs in tumors. The probability of availability of high density 
of CAAs in tumor of patients with BMI>30 is increased by a factor 
of almost 9 (OR 8.84, χ2 = 13.47, 95%CI 16.777–4.665, P<0.01) as 
compared with BMI<30. Data obtained demonstrate that adipocytes 
are as major component of the microenvironment of gastric cancer, 
especially under obesity.

CK-positive Cells in Bone Marrow

 Overall, 88.3% of patients have been with M0 category. It 
was determined that CK-positive cells were detected in BM of 
50.1% gastric cancer patients among all investigated. There was 
no association between DTCs in BM and clinicopathological 
characteristics. It makes no difference between of groups of patients 
according to BMI concerning the availability of DTCs in BM: 47.6%, 
56.2% and 41.2% of patients with BMI<25, BMI>25<30, BMI>30 had 
DTCs in BM, respectively. Meanwhile, it was found the association 
between the presence of DTCs in BM and density of CAAs in tumors: 
DTCs in BM were detected in 41.3% and in 58.7% of patients when 
tumors characterized by low and high density of CAAs, respectively. 
When tumors characterized by high density of CAAs appearance of 
tumor cells in BM has been found in 35.7% of patients with BMI>30 
as compare with 70.6% and 62.5% of patients with BMI<25 and 
BMI>25<30. In patients with obesity frequency of DTCs finding in 
BM was significantly decreased and it was statistically significant (OR 
4.33, χ2 = 3.82, 95%CI 9.341–2.007, P<0.05) as compare with patients 
with BMI<25. It may be suggested that adipocites, namely CAAs, 
playing an essential role in the regulation of metabolic functions in 
the variety of processes involved in metastatic spread of tumor cells.

CXCR4-positive Cells in Tumor Tissue

Overall, 83.1% of patients had tumors with CXCR4-positive 
cells. Statistically significant correlation between CXCR4-positivity 
of tumors and clinical characteristics was not found. The median 
number of CXCR4+ cells was 24.2% (range of 13.4–81.0%). It makes no 
difference between of groups of patients according to BMI concerning 
the CXCR4-positive cells: 66.7%, 65% and 60% of patients with 
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BMI<25, BMI>25<30, BMI>30 had high number of CXCR4-positive 
cells in tumor, respectively. Meanwhile, it was found the association 
between high number of CXCR4-positive cells and density of CAAs 
in tumors. High number of CXCR4-positive cells were detected in 
35.3% and in 72.7% of patients when tumors characterized by low 
and high density of CAAs, respectively (OR 7.3, χ2 = 12.45, 95%CI 
13.654–4.208, P<0.01).

The mean number of CXCR4-cells in tumors with high density 
of CAAs was 47.4±1.9%, 37.8±4.1% and 48.5±2.9% in patients 
with BMI<25, BMI>25<30, BMI>30, respectively.When tumors 
characterized by high density of CAAs presence of high number of 
CXCR4-positive cells have been found in 77.8%, 62.5% and 71.4% of 
patients with BMI<25 and BMI>25<30 and. BMI>30, respectively, 
and presence of DTCs in BM in these groups of patients was the 
following: 88.9% of patients with BMI<25, in 58.3% of patients with 
BMI>25<30 and in 18.2% of patients with BMI>30.It is notably 
important to note that in patients with BMI>30 having high density 
of CAAs and high number of CXCR4-positive cells in primary tumor 
the incidence of DTCs in BM was rather low. It may be supposed 
that under obesity additional mechanisms may be switched off in 
tumor microenvironment modulated by excess of adipocites to 
prevent cells escaping.When tumors characterized by low density of 
CAAs low number of CXCR4-positive cells was detected in 33.3%, 
51% and 44.1% of patients with BMI<25, BMI>25<30 and BMI>30, 
respectively. Presence of DTC in BM in these groups of patients was 
the following: in 31.5% of patients with BMI<25, in 44.6% of patients 
with BMI>25<30 and in 41.1% of patients with BMI>30.

Conclusion

There was not found the associations between availability of DTCs 
in BM as well CXCR4-positive cells in tumor and BMI but incidence 
of DTC in BM and high number of CXCR4-positive cells in tumor 
associated with high density of CAAs of patients with BMI<25 
and BMI>25<30 but it is not true for patients with BMI>30 where 
frequency of DTCs finding in BM was significantly decreased and 
that is statistically significant.In patients with BMI>30 high density of 
CAAs and high number of CXCR4-positive cells in tumor may create 
specific tumor microenvironment that prevent tumor cells to leave 
primary lesion. Understanding the metabolic changes that occur in 
obese individuals may also help to elucidate more effective treatment 
options for these patients when they develop cancer.
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